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Preface

“Only a small community has concentrated on general intelligence. No
one has tried to make a thinking machine ...

The bottom line is that we really haven’t progressed too far toward a
truly intelligent machine. We have collections of dumb specialists in
small domains; the true magesty of general intelligence still awaits our
attack. ...

We have got to get back to the deepest questions of AI and general
intelligence...”

— Marvin Minsky
as interviewed in Hal’s Legacy, edited by David Stork, 2000.

Our goal in creating this edited volume has been to fill an apparent gap
in the scientific literature, by providing a coherent presentation of a body of
contemporary research that, in spite of its integral importance, has hitherto
kept a very low profile within the scientific and intellectual community. This
body of work has not been given a name before; in this book we christen it
“Artificial General Intelligence” (AGI). What distinguishes AGI work from
run-of-the-mill “artificial intelligence” research is that it is explicitly focused
on engineering general intelligence in the short term. We have been active
researchers in the AGI field for many years, and it has been a pleasure to
gather together papers from our colleagues working on related ideas from
their own perspectives. In the Introduction we give a conceptual overview of
the AGI field, and also summarize and interrelate the key ideas of the papers
in the subsequent chapters.

Of course, “general intelligence” does not mean exactly the same thing
to all researchers. In fact it is not a fully well-defined term, and one of the
issues raised in the papers contained here is how to define general intelligence
in a way that provides maximally useful guidance to practical AT work. But,
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nevertheless, there is a clear qualitative meaning to the term. What is meant
by AGI is, loosely speaking, Al systems that possess a reasonable degree of
self-understanding and autonomous self-control, and have the ability to solve
a variety of complex problems in a variety of contexts, and to learn to solve
new problems that they didnt know about at the time of their creation. A
marked distinction exists between practical AGI work and, on the other hand:

e Pragmatic but specialized “narrow AI” research which is aimed at cre-
ating programs carrying out specific tasks like playing chess, diagnosing
diseases, driving cars and so forth (most contemporary Al work falls into
this category.)

e Purely theoretical Al research, which is aimed at clarifying issues regarding
the nature of intelligence and cognition, but doesnt involve technical details
regarding actually realizing artificially intelligent software.

Some of the papers presented here come close to the latter (purely theo-
retical) category, but we have selected them because the theoretical notions
they contain seem likely to lead to such technical details in the medium-term
future, and/or resonate very closely with the technical details of AGI designs
proposed by other authors.

The audience we intend to reach includes the Al community, and also the
broader community of scientists and students in related fields such as philoso-
phy, neuroscience, linguistics, psychology, biology, sociology, anthropology and
engineering. Significantly more so than narrow AI, AGI is interdisciplinary in
nature, and a full appreciation of the general intelligence problem and its
various potential solutions requires one to take a wide variety of different
perspectives.

Not all significant AGI researchers are represented in these pages, but we
have sought to bring together a multiplicity of perspectives, including many
that disagree with our own. Bringing a diverse body of AGI research together
in a single volume reveals the common themes among various researchers work,
and makes clear what the big open questions are in this vital and critical area
of research. It is our hope that this book will interest more researchers and
students in pursuing AGI research themselves, thus aiding in the progress of
science.

In the three years that this book has been in the making, we have noticed
a significant increase in interest in AGl-related research within the academic
Al community, including a number of small conference workshops with titles
related to “Human-Level Intelligence.” We consider this challenge to the over-
whelming dominance of narrow-Al an extremely positive move; however, we
submit that “Artificial General Intelligence” is a more sensible way to concep-
tualize the problem than “Human-Level Intelligence.” The AGI systems and
approaches described in these pages are not necessarily oriented towards emu-
lating the human brain; and given the heterogeneity of the human mind/brain
and its highly various levels of competence at various sorts of tasks, it seems
very difficult to define “Human-Level Intelligence” in any way that is generally
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applicable to Al systems that are fundamentally non-human-like in concep-
tion. On the other hand, the work of Hutter and Schmidhuber reported here
provides a reasonable, abstract mathematical characterization of general intel-
ligence which, while not in itself providing a practical approach to AGI design
and engineering, at least provides a conceptually meaningful formalization of
the ultimate goal of AGI work.

The grand goal of AGI remains mostly unrealized, and how long it will
be until this situation is remedied remains uncertain. Among scientists who
believe in the fundamental possibility of strong AI, the most optimistic se-
rious estimates we have heard are in the range of 5-10 years, and the most
pessimistic are in the range of centuries. While none of the articles contained
here purports to present a complete solution to the AGI problem, we believe
that they collectively embody meaningful conceptual progress, and indicate
clearly that the direct pursuit of AGI is an endeavor worthy of significant
research attention.
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Contemporary Approaches to Artificial
General Intelligence

Cassio Pennachin and Ben Goertzel

AGIRI - Artificial General Intelligence Research Institute
1405 Bernerd Place, Rockville, MD 20851, USA
cassio@agiri.org, ben@agiri.org - http://www.agiri.org

1 A Brief History of AGI

The vast bulk of the Al field today is concerned with what might be called
“narrow AI” — creating programs that demonstrate intelligence in one or an-
other specialized area, such as chess-playing, medical diagnosis, automobile-
driving, algebraic calculation or mathematical theorem-proving. Some of these
narrow Al programs are extremely successful at what they do. The Al projects
discussed in this book, however, are quite different: they are explicitly aimed
at artificial general intelligence, at the construction of a software program
that can solve a variety of complex problems in a variety of different domains,
and that controls itself autonomously, with its own thoughts, worries, feelings,
strengths, weaknesses and predispositions.

Artificial General Intelligence (AGI) was the original focus of the Al field,
but due to the demonstrated difficulty of the problem, not many Al researchers
are directly concerned with it anymore. Work on AGI has gotten a bit of a
bad reputation, as if creating digital general intelligence were analogous to
building a perpetual motion machine. Yet, while the latter is strongly implied
to be impossible by well-established physical laws, AGI appears by all known
science to be quite possible. Like nanotechnology, it is “merely an engineering
problem”, though certainly a very difficult one.

The presupposition of much of the contemporary work on “narrow AI”
is that solving narrowly defined subproblems, in isolation, contributes signifi-
cantly toward solving the overall problem of creating real AI. While this is of
course true to a certain extent, both cognitive theory and practical experience
suggest that it is not so true as is commonly believed. In many cases, the best
approach to implementing an aspect of mind in isolation is very different from
the best way to implement this same aspect of mind in the framework of an
integrated AGl-oriented software system.

The chapters of this book present a series of approaches to AGI. None
of these approaches has been terribly successful yet, in AGI terms, although
several of them have demonstrated practical value in various specialized do-
mains (narrow-Al style). Most of the projects described are at an early stage
of engineering development, and some are still in the design phase. Our aim
is not to present AGI as a mature field of computer science — that would be
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impossible, for it is not. Our goal is rather to depict some of the more excit-
ing ideas driving the AGI field today, as it emerges from infancy into early
childhood.

In this introduction, we will briefly overview the AGI approaches taken
in the following chapters, and we will also discuss some other historical and
contemporary Al approaches not extensively discussed in the remainder of
the book.

1.1 Some Historical AGI-Related Projects

Generally speaking, most approaches to Al may be divided into broad cate-
gories such as:

symbolic;

symbolic and probability- or uncertainty-focused;
neural net-based;

evolutionary;

artificial life;

program search based;

embedded;

integrative.

This breakdown works for AGI-related efforts as well as for purely narrow-
AT-oriented efforts. Here we will use it to structure a brief overview of the AGI
field. Clearly, there have been many more AGI-related projects than we will
mention here. Our aim is not to give a comprehensive survey, but rather to
present what we believe to be some of the most important ideas and themes in
the AGI field overall, so as to place the papers in this volume in their proper
context.

The majority of ambitious AGI-oriented projects undertaken to date have
been in the symbolic-Al paradigm. One famous such project was the General
Problem Solver [42], which used heuristic search to solve problems. GPS did
succeed in solving some simple problems like the Towers of Hanoi and crypto-
arithmetic,’ but these are not really general problems — there is no learning
involved. GPS worked by taking a general goal — like solving a puzzle — and
breaking it down into subgoals. It then attempted to solve the subgoals, break-
ing them down further into even smaller pieces if necessary, until the subgoals
were small enough to be addressed directly by simple heuristics. While this
basic algorithm is probably necessary in planning and goal satisfaction for
a mind, the rigidity adopted by GPS limits the kinds of problems one can
successfully cope with.

! Crypto-arithmentic problems are puzzles like DONALD + GERALD = ROBERT. To
solve such a problem, assign a number to each letter so that the equation comes out
correctly.
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Probably the most famous and largest symbolic Al effort in existence to-
day is Doug Lenat’s CYC project.? This began in the mid-80’s as an attempt
to create true Al by encoding all common sense knowledge in first-order pred-
icate logic. The encoding effort turned out to require a large effort, and soon
Cyc deviated from a pure AGI direction. So far they have produced a use-
ful knowledge database and an interesting, highly complex and specialized
inference engine, but they do not have a systematic R&D program aimed
at creating autonomous, creative interactive intelligence. They believe that
the largest subtask required for creating AGI is the creation of a knowledge
base containing all human common-sense knowledge, in explicit logical form
(they use a variant of predicate logic called CycL). They have a large group of
highly-trained knowledge encoders typing in knowledge, using CycL syntax.

We believe that the Cyc knowledge base may potentially be useful eventu-
ally to a mature AGI system. But we feel that the kind of reasoning, and the
kind of knowledge embodied in Cyc, just scratches the surface of the dynamic
knowledge required to form an intelligent mind. There is some awareness of
this within Cycorp as well, and a project called CognitiveCyc has recently been
initiated, with the specific aim of pushing Cyc in an AGI direction (Stephen
Reed, personal communication).

Also in the vein of “traditional AI”, Alan Newell’s well-known SOAR
project® is another effort that once appeared to be grasping at the goal of
human-level AGI, but now seems to have retreated into a role of an interest-
ing system for experimenting with limited-domain cognitive science theories.
Newell tried to build “Unified Theories of Cognition”, based on ideas that
have now become fairly standard: logic-style knowledge representation, men-
tal activity as problem-solving carried out by an assemblage of heuristics,
etc. The system was by no means a total failure, but it was not constructed
to have a real autonomy or self-understanding. Rather, it’s a disembodied
problem-solving tool, continually being improved by a small but still-growing
community of SOAR enthusiasts in various American universities.

The ACT-R framework [3], though different from SOAR, is similar in that
it’s an ambitious attempt to model human psychology in its various aspects,
focused largely on cognition. ACT-R uses probabilistic ideas and is generally
closer in spirit to modern AGI approaches than SOAR is. But still, similarly to
SOAR, many have argued that it does not contain adequate mechanisms for
large-scale creative cognition, though it is an excellent tool for the modeling
of human performance on relatively narrow and simple tasks.

Judea Pearl’s work on Bayesian networks [43] introduces principles from
probability theory to handle uncertainty in an AI scenario. Bayesian net-
works are graphical models that embody knowledge about probabilities and
dependencies between events in the world. Inference on Bayesian networks
is possible using probabilistic methods. Bayesian nets have been used with

2See www.cyc.com and [38].
3See http://ai.eecs.umich.edu/soar/ and [37].
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success in many narrow domains, but, in order to work well, they need a rea-
sonably accurate model of the probabilities and dependencies of the events
being modeled. However, when one has to learn either the structure or the
probabilities in order to build a good Bayesian net, the problem becomes very
difficult [29].

Pei Wang’s NARS system, described in this volume, is a very different
sort of attempt to create an uncertainty-based, symbolic Al system. Rather
than using probability theory, Wang uses his own form of uncertain logic — an
approach that has been tried before, with fuzzy logic, certainty theory (see,
for example, [50]) and so forth, but has never before been tried with such
explicit AGI ambitions.

Another significant historical attempt to “put all the pieces together” and
create true artificial general intelligence was the Japanese 5th Generation
Computer System project. But this project was doomed by its pure engineer-
ing approach, by its lack of an underlying theory of mind. Few people mention
this project these days. In our view, much of the AI research community ap-
pears to have learned the wrong lessons from the 5th generation Al experience
— they have taken the lesson to be that integrative AGI is bad, rather than
that integrative AGI should be approached from a sound conceptual basis.

The neural net approach has not spawned quite so many frontal assaults on
the AGI problem, but there have been some efforts along these lines. Werbos
has worked on the application of recurrent networks to a number of problems
[65, 56]. Stephen Grossberg’s work [25] has led to a host of special neural
network models carrying out specialized functions modeled on particular brain
regions. Piecing all these networks together could eventually lead to a brain-
like AGI system. This approach is loosely related to Hugo de Garis’s work,
discussed in this volume, which seeks to use evolutionary programming to
“evolve” specialized neural circuits, and then piece the circuits together into
a whole mind. Peter Voss’s a2i2 architecture also fits loosely into this category
— his algorithms are related to prior work on “neural gasses” [41], and involve
the cooperative use of a variety of different neural net learning algorithms. Less
biologically oriented than Grossberg or even de Garis, Voss’s neural system
net does not try to closely model biological neural networks, but rather to
emulate the sort of thing they do on a fairly high level.

The evolutionary programming approach to Al has not spawned any ambi-
tious AGI projects, but it has formed a part of several AGI-oriented systems,
including our own Novamente system, de Garis’s CAM-Brain machine men-
tioned above, and John Holland’s classifier systems [30]. Classifier systems are
a kind of hybridization of evolutionary algorithms and probabilistic-symbolic
AT; they are AGl-oriented in the sense that they are specifically oriented to-
ward integrating memory, perception, and cognition to allow an Al system to
act in the world. Typically they have suffered from severe performance prob-
lems, but Eric Baum’s recent variations on the classifier system theme seem
to have partially resolved these issues [5]. Baum’s Hayek systems were tested
on a simple “three peg blocks world” problem where any disk may be placed
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on any other; thus the required number of moves grows only linearly with the
number of disks, not exponentially. The chapter authors were able to replicate
their results only for n up to 5 [36].

The artificial life approach to AGI has remained basically a dream and
a vision, up till this point. Artificial life simulations have succeeded, to a
point, in getting interesting mini-organisms to evolve and interact, but no one
has come close to creating an Alife agent with significant general intelligence.
Steve Grand made some limited progress in this direction with his work on the
Creatures game, and his current R&D efforts are trying to go even further [24].
Tom Ray’s Network Tierra project also had this sort of ambition, but seems
to have stalled at the stage of the automated evolution of simple multicellular
artificial lifeforms.

Program search based AGI is a newer entry into the game. It had its ori-
gins in Solomonoff, Chaitin and Kolmogorov’s seminal work on algorithmic
information theory in the 1960s, but it did not become a serious approach
to practical AT until quite recently, with work such as Schmidhuber’s OOPS
system described in this volume, and Kaiser’s dag-based program search al-
gorithms. This approach is different from the others in that it begins with a
formal theory of general intelligence, defines impractical algorithms that are
provably known to achieve general intelligence (see Hutter’s chapter on AIXI
in this volume for details), and then seeks to approximate these impractical
algorithms with related algorithms that are more practical but less universally
able.

Finally, the integrative approach to AGI involves taking elements of some
or all of the above approaches and creating a combined, synergistic system.
This makes sense if you believe that the different Al approaches each capture
some aspect of the mind uniquely well. But the integration can be done in
many different ways. It is not workable to simply create a modular system
with modules embodying different Al paradigms: the different approaches are
too different in too many ways. Instead one must create a unified knowl-
edge representation and dynamics framework, and figure out how to manifest
the core ideas of the various Al paradigms within the universal framework.
This is roughly the approach taken in the Novamente project, but what has
been found in that project is that to truly integrate ideas from different Al
paradigms, most of the ideas need to be in a sense “reinvented” along the way.

Of course, no such categorization is going to be complete. Some of the
papers in this book do not fit well into any of the above categories: for instance,
Yudkowsky’s approach, which is integrative in a sense, but does not involve
integrating prior Al algorithms; and Hoyes’s approach, which is founded on
the notion of 3D simulation. What these two approaches have in common is
that they both begin with a maverick cognitive science theory, a bold new
explanation of human intelligence. They then draw implications and designs
for AGI from the respective cognitive science theory.

None of these approaches has yet proved itself successful — this book is
a discussion of promising approaches to AGI, not successfully demonstrated
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ones. It is probable that in 10 years a different categorization of AGI ap-
proaches will seem more natural, based on what we have learned in the in-
terim. Perhaps one of the approaches described here will have proven success-
ful, perhaps more than one; perhaps AGI will still be a hypothetical achieve-
ment, or perhaps it will have been achieved by methods totally unrelated to
those described here. Our own belief, as AGI researchers, is that an integra-
tive approach such as the one embodied in our Novamente Al Engine has an
excellent chance of making it to the AGI finish line. But as the history of
AT shows, researchers’ intuitions about the prospects of their Al projects are
highly chancy. Given the diverse and inter-contradictory nature of the differ-
ent AGI approaches presented in these pages, it stands to reason that a good
percentage of the authors have got to be significantly wrong on significant
points! We invite the reader to study the AGI approaches presented here, and
others cited but not thoroughly discussed here, and draw their own conclu-
sions. Above all, we wish to leave the reader with the impression that AGI is
a vibrant area of research, abounding with exciting new ideas and projects —
and that, in fact, it is AGI rather than narrow Al that is properly the primary
focus of artificial intelligence research.

2 What Is Intelligence?

What do we mean by general intelligence? The dictionary defines intelligence
with phrases such as “The capacity to acquire and apply knowledge”, and
“The faculty of thought and reason.” General intelligence implies an ability
to acquire and apply knowledge, and to reason and think, in a variety of
domains, not just in a single area like, say, chess or game-playing or languages
or mathematics or rugby. Pinning down general intelligence beyond this is a
subtle though not unrewarding pursuit. The disciplines of psychology, Al and
control engineering have taken differing but complementary approaches, all of
which are relevant to the AGI approaches described in this volume.

2.1 The Psychology of Intelligence

The classic psychological measure of intelligence is the “g-factor” [7], although
this is quite controversial, and many psychologists doubt that any available
IQ test really measures human intelligence in a general way. Gardner’s [15]
theory of multiple intelligences argues that human intelligence largely breaks
down into a number of specialized-intelligence components (including linguis-
tic, logical-mathematical, musical, bodily-kinesthetic, spatial, interpersonal,
intra-personal, naturalist and existential).

Taking a broad view, it is clear that, in fact, human intelligence is not
all that general. A huge amount of our intelligence is focused on situations
that have occurred in our evolutionary experience: social interaction, vision
processing, motion control, and so forth. There is a large research literature
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in support of this fact. For instance, most humans perform poorly at making
probabilistic estimates in the abstract, but when the same estimation tasks
are presented in the context of familiar social situations, human accuracy be-
comes much greater. Our intelligence is general “in principle”, but in order
to solve many sorts of problems, we need to resort to cumbersome and slow
methods such as mathematics and computer programming. Whereas we are
vastly more efficient at solving problems that make use of our in-built special-
ized neural circuitry for processing vision, sound, language, social interaction
data, and so forth. Gardner’s point is that different people have particularly
effective specialized circuitry for different specializations. In principle, a hu-
man with poor social intelligence but strong logical-mathematical intelligence
could solve a difficult problem regarding social interactions, but might have to
do so in a very slow and cumbersome over-intellectual way, whereas an indi-
vidual with strong innate social intelligence would solve the problem quickly
and intuitively.

Taking a somewhat different approach, psychologist Robert Sternberg [53]
distinguishes three aspects of intelligence: componential, contextual and ex-
periential. Componential intelligence refers to the specific skills people have
that make them intelligent; experiential refers to the ability of the mind to
learn and adapt through experience; contextual refers to the ability of the
mind to understand and operate within particular contexts, and select and
modify contexts.

Applying these ideas to AI, we come to the conclusion that, to roughly em-
ulate the nature of human general intelligence, an artificial general intelligence
system should have:

e the ability to solve general problems in a non-domain-restricted way, in
the same sense that a human can;

e most probably, the ability to solve problems in particular domains and
particular contexts with particular efficiency;

e the ability to use its more generalized and more specialized intelligence
capabilities together, in a unified way;

e the ability to learn from its environment, other intelligent systems, and
teachers;

e the ability to become better at solving novel types of problems as it gains
experience with them.

These points are based to some degree on human intelligence, and it may
be that they are a little too anthropomorphic. One may envision an AGI
system that is so good at the “purely general” aspect of intelligence that it
doesn’t need the specialized intelligence components. The practical possibility
of this type of AGI system is an open question. Our guess is that the multiple-
specializations nature of human intelligence will be shared by any AGI system
operating with similarly limited resources, but as with much else regarding
AGI, only time will tell.
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One important aspect of intelligence is that it can only be achieved by
a system that is capable of learning, especially autonomous and incremental
learning. The system should be able to interact with its environment and
other entities in the environment (which can include teachers and trainers,
human or not), and learn from these interactions. It should also be able to
build upon its previous experiences, and the skills they have taught it, to learn
more complex actions and therefore achieve more complex goals.

The vast majority of work in the AT field so far has pertained to highly spe-
cialized intelligence capabilities, much more specialized than Gardner’s mul-
tiple intelligence types — e.g. there are Al programs good at chess, or theorem
verification in particular sorts of logic, but none good at logical-mathematical
reasoning in general. There has been some research on completely general non-
domain-oriented AGI algorithms, e.g. Hutter’s AIXI model described in this
volume, but so far these ideas have not led to practical algorithms (Schmid-
huber’s OOPS system, described in this volume, being a promising possibility
in this regard).

2.2 The Turing Test

Next, no discussion of the definition of intelligence in an AI context would
be complete without mention of the well-known Turing Test. Put loosely,
the Turing test asks an Al program to simulate a human in a text-based
conversational interchange. The most important point about the Turing test,
we believe, is that it is a sufficient but not necessary criterion for artificial
general intelligence. Some Al theorists don’t even consider the Turing test as
a sufficient test for general intelligence — a famous example is the Chinese
Room argument [49].

Alan Turing, when he formulated his test, was confronted with people
who believed Al was impossible, and he wanted to prove the existence of an
intelligence test for computer programs. He wanted to make the point that
intelligence is defined by behavior rather than by mystical qualities, so that
if a program could act like a human it should be considered as intelligent
as a human. This was a bold conceptual leap for the 1950’s. Clearly, how-
ever, general intelligence does not necessarily require the accurate simulation
of human intelligence. It seems unreasonable to expect a computer program
without a human-like body to be able to emulate a human, especially in con-
versations regarding body-focused topics like sex, aging, or the experience of
having the flu. Certainly, humans would fail a “reverse Turing test” of em-
ulating computer programs — humans can’t even emulate pocket calculators
without unreasonably long response delays.

2.3 A Control Theory Approach to Defining Intelligence

The psychological approach to intelligence, briefly discussed above, attempts
to do justice to the diverse and multifaceted nature of the notion of intelli-
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gence. As one might expect, engineers have a much simpler and much more
practical definition of intelligence.

The branch of engineering called control theory deals with ways to cause
complex machines to yield desired behaviors. Adaptive control theory deals
with the design of machines which respond to external and internal stimuli
and, on this basis, modify their behavior appropriately. And the theory of
intelligent control simply takes this one step further. To quote a textbook of
automata theory [2]:

[An] automaton is said to behave “intelligently” if, on the basis of its
“training” data which is provided within some context together with
information regarding the desired action, it takes the correct action
on other data within the same context not seen during training.

This is the sense in which contemporary artificial intelligence programs are
intelligent. They can generalize within their limited context; they can follow
the one script which they are programmed to follow. Of course, this is not
really general intelligence, not in the psychological sense, and not in the sense
in which we mean it in this book.

On the other hand, in their treatise on robotics, [57] presented a more
general definition:

Intelligence is the ability to behave appropriately under unpredictable
conditions.

Despite its vagueness, this criterion does serve to point out the problem
with ascribing intelligence to chess programs and the like: compared to our
environment, at least, the environment within which they are capable of be-
having appropriately is very predictable indeed, in that it consists only of
certain (simple or complex) patterns of arrangement of a very small number
of specifically structured entities. The unpredictable conditions clause suggests
the experiential and contextual aspects of Sternberg’s psychological analysis
of intelligence.

Of course, the concept of appropriateness is intrinsically subjective. And
unpredictability is relative as well — to a creature accustomed to living in
interstellar space and inside stars and planets as well as on the surfaces of
planets, or to a creature capable of living in 10 dimensions, our environment
might seem just as predictable as the universe of chess seems to us. In or-
der to make this folklore definition precise, one must first of all confront the
vagueness inherent in the terms “appropriate” and “unpredictable”.

In some of our own past work [17], we have worked with a variant of the
Winkless and Browning definition,

Intelligence is the ability to achieve complex goals in complex environ-
ments.
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In a way, like the Winkless and Browning definition, this is a subjective
rather than objective view of intelligence, because it relies on the subjective
identification of what is and is not a complex goal or a complex environment.
Behaving “appropriately”, as Winkless and Browning describe, is a matter of
achieving organismic goals, such as getting food, water, sex, survival, status,
etc. Doing so under unpredictable conditions is one thing that makes the
achievement of these goals complex.

Marcus Hutter, in his chapter in this volume, gives a rigorous definition of
intelligence in terms of algorithmic information theory and sequential decision
theory. Conceptually, his definition is closely related to the “achieve complex
goals” definition, and it’s possible the two could be equated if one defined
achieve, compler and goals appropriately.

Note that none of these approaches to defining intelligence specify any
particular properties of the internals of intelligent systems. This is, we be-
lieve, the correct approach: “intelligence” is about what, not how. However,
it is possible that what implies how, in the sense that there may be certain
structures and processes that are necessary aspects of any sufficiently intel-
ligent system. Contemporary psychological and Al science are nowhere near
the point where such a hypothesis can be verified or refuted.

2.4 Efficient Intelligence

Pei Wang, a contributor to this volume, has proposed his own definition of
intelligence, which posits, basically, that “Intelligence is the ability to work
and adapt to the environment with insufficient knowledge and resources.”
More concretely, he believes that an intelligent system is one that works under
the Assumption of Insufficient Knowledge and Resources (AIKR), meaning
that the system must be, at the same time,

A finite system The system’s computing power, as well as its working and
storage space, is limited.

A real-time system The tasks that the system has to process, including
the assimilation of new knowledge and the making of decisions, can arrive
at any time, and all have deadlines attached with them.

An ampliative system The system not only can retrieve available knowl-
edge and derive sound conclusions from it, but also can make refutable
hypotheses and guesses based on it when no certain conclusion can be
drawn.

An open system No restriction is imposed on the relationship between old
knowledge and new knowledge, as long as they are representable in the
system’s interface language.

A self-organized system The system can accommodate itself to new knowl-
edge, and adjust its memory structure and mechanism to improve its time
and space efficiency, under the assumption that future situations will be
similar to past situations.
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Wang’s definition? is not purely behavioral: it makes judgments regarding
the internals of the AI system whose intelligence is being assessed. However,
the biggest difference between this and the above definitions is its emphasis on
the limitation of the system’s computing power. For instance, Marcus Hutter’s
AIXI algorithm, described in this volume, assumes infinite computing power
(though his related AIXTtl algorithm works with finite computing power).
According to Wang’s definition, AIXI is therefore unintelligent. Yet, AIXTI can
solve any problem at least as effectively as any finite-computing-power-based
AT system, so it seems in a way unintuitive to call it “unintelligent”.

We believe that what Wang’s definition hints at is a new concept, that we
call efficient intelligence, defined as:

Efficient intelligence is the ability to achieve intelligence using severely
limited resources.

Suppose we had a computer 1Q test called the CIQ. Then, we might say
that an AGI program with a CIQ of 500 running on 5000 machines has more
intelligence, but less efficient-intelligence, than a machine with a CIQ of 100
that runs on just one machine.

According to the “achieving complex goals in complex environments” cri-
terion, AIXI and AIXItl are the most intelligent programs described in this
book, but not the ones with the highest efficient intelligence. According to
Wang’s definition of intelligence, AIXI and AIXItl are not intelligent at all,
they only emulate intelligence through simple, inordinately wasteful program-
search mechanisms.

As editors, we have not sought to impose a common understanding of the
nature of intelligence on all the chapter authors. We have merely requested
that authors be clear regarding the concept of intelligence under which they
have structured their work. At this early stage in the AGI game, the notion
of intelligence most appropriate for AGI work is still being discovered, along
with the exploration of AGI theories, designs and programs themselves.

3 The Abstract Theory of General Intelligence

One approach to creating AGI is to formalize the problem mathematically,
and then seek a solution using the tools of abstract mathematics. One may
begin by formalizing the notion of intelligence. Having defined intelligence,
one may then formalize the notion of computation in one of several generally-
accepted ways, and ask the rigorous question: How may one create intelligent
computer programs? Several researchers have taken this approach in recent
years, and while it has not provided a panacea for AGI, it has yielded some

4In more recent work, Wang has modified the details of this definition, but the
theory remains the same.
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very interesting results, some of the most important ones are described in
Hutter’s and Schmidhuber’s chapters in this book.

From a mathematical point of view, as it turns out, it doesn’t always
matter so much exactly how you define intelligence. For many purposes, any
definition of intelligence that has the general form “Intelligence is the maxi-
mization of a certain quantity, by a system interacting with a dynamic envi-
ronment” can be handled in roughly the same way. It doesn’t always matter
exactly what the quantity being maximized is (whether it’s “complexity of
goals achieved”, for instance, or something else).

Let’s use the term “behavior-based maximization criterion” to character-
ize the class of definitions of intelligence indicated in the previous paragraphs.
Suppose one has some particular behavior-based maximization criterion in
mind — then Marcus Hutter’s work on the AIXI system, described in his
chapter here, gives a software program that will be able to achieve intelli-
gence according to the given criterion. Now, there’s a catch: this program
may require infinite memory and an infinitely fast processor to do what it
does. But he also gives a variant of AIXI which avoids this catch, by restrict-
ing attention to programs of bounded length ! and bounded time t. Loosely
speaking, the AIXItl variant will provably be as intelligent as any other com-
puter program of length up to I, satisfying the maximization criterion, within
a constant multiplicative factor and a constant additive factor.

Hutter’s work draws on a long tradition of research in statistical learning
theory and algorithmic information theory, mostly notably Solomonoft’s early
work on induction [51, 52] and Levin’s [39, 40] work on computational measure
theory. At the present time, this work is more exciting theoretically than
pragmatically. The “constant factor” in his theorem may be very large, so
that, in practice, AIXItl is not really going to be a good way to create an AGI
software program. In essence, what AIXItl is doing is searching the space of
all programs of length L, evaluating each one, and finally choosing the best
one and running it. The “constant factors” involved deal with the overhead
of trying every other possible program before hitting on the best one!

A simple AI system behaving somewhat similar to AIXItl could be built
by creating a program with three parts:

the data store;
the main program;
the meta-program.

The operation of the meta-program would be, loosely, as follows:

e At time ¢, place within the data store a record containing the complete
internal state of the system, and the complete sensory input of the system.
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e Search the space of all programs P of size |P| < [ to find the one that,
based on the data in the data store, has the highest expected value for the
given maximization criterion.’

e Install P as the main program.

Conceptually, the main value of this approach for AGI is that it solidly
establishes the following contention:

If you accept any definition of intelligence of the general form “max-
imization of a certain function of system behavior,”

then the problem of creating AGI is basically a problem of dealing with
the issues of space and time efficiency.

As with any mathematics-based conclusion, the conclusion only follows if
one accepts the definitions. If someone’s conception of intelligence fundamen-
tally can’t be cast into the form of a behavior-based maximization criterion,
then these ideas aren’t relevant for AGI as that person conceives it. How-
ever, we believe that the behavior-based maximization criterion approach to
defining intelligence is a good one, and hence we believe that Hutter’s work
is highly significant.

The limitations of these results are twofold. Firstly, they pertain only to
AGI in the “massive computational resources” case, and most AGI theorists
feel that this case is not terribly relevant to current practical AGI research
(though, Schmidhuber’s OOPS work represents a serious attempt to bridge
this gap). Secondly, their applicability to the physical universe, even in prin-
ciple, relies on the Church-Turing Thesis. The editors and contributors of this
volume are Church-Turing believers, as are nearly all computer scientists and
AT researchers, but there are well-known exceptions such as Roger Penrose. If
Penrose and his ilk are correct, then the work of Hutter and his colleagues is
not necessarily informative about the nature of AGI in the physical universe.

For instance, consider Penrose’s contention that non-Turing quantum grav-
ity computing (as allowed by an as-yet unknown incomputable theory of quan-
tum gravity) is necessary for true general intelligence [44]. This idea is not
refuted by Hutter’s results, because it’s possible that:

AGI is in principle possible on ordinary Turing hardware;

AGI is only pragmatically possible, given the space and time constraints
imposed on computers by the physical universe, given quantum gravity
powered computer hardware.

The authors very strongly doubt this is the case, and Penrose has not
given any convincing evidence for such a proposition, but our point is merely
that in spite of recent advances in AGI theory such as Hutter’s work, we have

5There are some important details here; for instance, computing the “expected
value” using probability theory requires assumption of an appropriate prior distri-
bution, such as Solomonoff’s universal prior.
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no way of ruling such a possibility out mathematically. At points such as this,
uncertainties about the fundamental nature of mind and universe rule out the
possibility of a truly definitive theory of AGI.

From the perspective of computation theory, most of the chapters in this
book deal with ways of achieving reasonable degrees of intelligence given rea-
sonable amounts of space and time resources. Obviously, this is what the
human mind/brain does. The amount of intelligence it achieves is clearly lim-
ited by the amount of space in the brain and the speed of processing of neural
wetware.

We do not yet know whether the sort of mathematics used in Hutter’s work
can be made useful for defining practical AGI systems that operate within our
current physical universe — or, better yet, on current or near-future computer
hardware. However, research in this direction is proceeding vigorously. One
exciting project in this area is Schmidhuber’s OOPS system [48], which is a
bit like AIXItl, but has the capability of operating with realistic efficiency in
some practical situations. As Schmidhuber discusses in his first chapter in this
book, OOPS has been applied to some classic Al problems such as the Towers
of Hanoi problem, with highly successful results.

The basic idea of OOPS is to run all possible programs, but interleaved
rather than one after the other. In terms of the “meta-program” architecture
described above, here one has a meta-program that doesn’t run each possible
program one after the other, but rather lines all the possible programs up in
order, assigns each one a probability, and then at each time step chooses a
single program as the “current program”, with a probability proportional to
its estimated value at achieving the system goal, and then executes one step of
the current program. Another important point is that OOPS freezes solutions
to previous tasks, and may reuse them later.

As opposed to AIXItl, this strategy allows, in the average case, brief and
effective programs to rise to the top of the heap relatively quickly. The result,
in at least some practical problem-solving contexts, is impressive. Of course,
there are many ways to solve the Towers of Hanoi problem. Scaling up from toy
examples to real AGI on the human scale or beyond is a huge task for OOPS
as for other approaches showing limited narrow-Al success. But having made
the leap from abstract algorithmic information theory to limited narrow-Al
success is no small achievement.

Schmidhuber’s more recent Gédel Machine, which is fully self-referential,
is in principle capable of proving and subsequently exploiting performance
improvements to its own code. The ability to modify its own code allows the
Godel Machine to be more effective. Godel Machines are also more flexible in
terms of the utility function they aim to maximize while searching.

Lukasz Kaiser’s chapter follows up similar themes to Hutter’s and Schmid-
huber’s work. Using a slightly different computational model, Kaiser also takes
up the algorithmic-information-theory motif, and describes a program search
problem which is solved through the combination of program construction
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and the proof search — the program search algorithm itself, represented as a
directed acyclic graph, is continuously improved.

4 Toward a Pragmatic Logic

One of the primary themes in the history of Al is formal logic. However, there
are strong reasons to believe that classical formal logic is not suitable to play a
central role in an AGI system. It has no natural way to deal with uncertainty,
or with the fact that different propositions may be based on different amounts
of evidence. It leads to well-known and frustrating logical paradoxes. And it
doesn’t seem to come along with any natural “control strategy” for navigating
the combinatorial explosion of possible valid inferences.

Some modern Al researchers have reacted to these shortcomings by re-
jecting the logical paradigm altogether; others by creating modified logical
frameworks, possessing more of the flexibility and fluidity required of compo-
nents of an AGI architecture.

One of the key issues dividing Al researchers is the degree to which logical
reasoning is fundamental to their artificial minds. Some Al systems are built
on the assumption that basically every aspect of mental process should be
thought about as a kind of logical reasoning. Cyc is an example of this, as
is the NARS system reviewed in this volume. Other systems are built on
the premise that logic is irrelevant to the task of mind-engineering, that it
is merely a coarse, high-level description of the results of mental processes
that proceed according to non-logical dynamics. Rodney Brooks’ work on
subsumption robotics fits into this category, as do Peter Voss’s and Hugo de
Garis’s neural net AGI designs presented here. And there are Al approaches,
such as Novamente, that assign logic an important but non-exclusive role in
cognition — Novamente has roughly two dozen cognitive processes, of which
about one-fourth are logical in nature.

One fact muddying the waters somewhat is the nebulous nature of “logic”
itself. Logic means different things to different people. Even within the domain
of formal, mathematical logic, there are many different kinds of logic, including
forms like fuzzy logic that encompass varieties of reasoning not traditionally
considered “logical”. In our own work we have found it useful to adopt a very
general conception of logic, which holds that logic:

e has to do with forming and combining estimations of the (possibly proba-
bilistic, fuzzy, etc. ) truth values of various sorts of relationships based on
various sorts of evidence;

e is based on incremental processing, in which pieces of evidence are com-
bined step by step to form conclusions, so that at each stage it is easy to
see which pieces of evidence were used to give which conclusion

This conception differentiates logic from mental processing in general, but
it includes many sorts of reasoning besides typical, crisp, mathematical logic.
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The most common form of logic is predicate logic, as used in Cyc, in
which the basic entity under consideration is the predicate, a function that
maps argument variables into Boolean truth values. The argument variables
are quantified universally or existentially. An alternate form of logic is term
logic, which predates predicate logic, dating back at least to Aristotle and his
notion of the syllogism. In term logic, the basic element is a subject-predicate
statement, denotable as A — B, where — denotes a notion of inheritance or
specialization. Logical inferences take the form of syllogistic rules, which give
patterns for combining statements with matching terms, such as the deduction
rule

(A-BAB—-C)=A—-C.

The NARS system described in this volume is based centrally on term
logic, and the Novamente system makes use of a slightly different variety
of term logic. Both predicate and term logic typically use variables to handle
complex expressions, but there are also variants of logic, based on combinatory
logic, that avoid variables altogether, relying instead on abstract structures
called “higher-order functions” [10].

There are many different ways of handling uncertainty in logic. Conven-
tional predicate logic treats statements about uncertainty as predicates just
like any others, but there are many varieties of logic that incorporate un-
certainty at a more fundamental level. Fuzzy logic [59, 60] attaches fuzzy
truth values to logical statements; probabilistic logic [43] attaches probabili-
ties; NARS attaches degrees of uncertainty, etc. The subtle point of such sys-
tems is the transformation of uncertain truth values under logical operators
like AND, OR and NOT, and under existential and universal quantification.

And, however one manages uncertainty, there are also multiple varieties
of speculative reasoning. Inductive [4], abductive [32] and analogical reason-
ing [31] are commonly discussed. Nonmonotonic logic [8] handles some types
of nontraditional reasoning in a complex and controversial way. In ordinary,
monotonic logic, the truth of a proposition does not change when new in-
formation (axioms) is added to the system. In nonmonotonic logic, on the
other hand, the truth of a proposition may change when new information (ax-
ioms) is added to or old information is deleted from the system. NARS and
Novamente both use logic in an uncertain and nonmonotonic way.

Finally, there are special varieties of logic designed to handle special types
of reasoning. There are temporal logics designed to handle reasoning about
time, spatial logics for reasoning about space, and special logics for handling
various kinds of linguistic phenomena. None of the approaches described in
this book makes use of such special logics, but it would be possible to create
an AGI approach with such a focus. Cyc comes closest to this notion, as its
reasoning engine involves a number of specialized reasoning engines oriented
toward particular types of inference such as spatial, temporal, and so forth.



Contemporary Approaches to Artificial General Intelligence 17

When one gets into the details, the distinction between logical and non-
logical AT systems can come to seem quite fuzzy. Ultimately, an uncertain
logic rule is not that different from the rule governing the passage of activation
through a node in a neural network. Logic can be cast in terms of semantic
networks, as is done in Novamente; and in that case uncertain logic formulas
are arithmetic formulas that take in numbers associated with certain nodes
and links in a graph, and output numbers associated with certain other nodes
and links in the graph. Perhaps a more important distinction than logical
vs. non-logical is whether a system gains its knowledge experientially or via
being given expert rule type propositions. Often logic-based Al systems are
fed with knowledge by human programmers, who input knowledge in the
form of textually-expressed logic formulas. However, this is not a necessary
consequence of the use of logic. It is quite possible to have a logic-based Al
system that forms its own logical propositions by experience. On the other
hand, there is no existing example of a non-logical Al system that gains its
knowledge from explicit human knowledge encoding. NARS and Novamente
are both (to differing degrees) logic-based Al systems, but their designs devote
a lot of attention to the processes by which logical propositions are formed
based on experience, which differentiates them from many traditional logic-
based Al systems, and in a way brings them closer to neural nets and other
traditional non-logical Al systems.

5 Emulating the Human Brain

One almost sure way to create artificial general intelligence would be to ex-
actly copy the human brain, down to the atomic level, in a digital simulation.
Admittedly, this would require brain scanners and computer hardware far ex-
ceeding what is currently available. But if one charts the improvement curves
of brain scanners and computer hardware, one finds that it may well be plausi-
ble to take this approach sometime around 2030-2050. This argument has been
made in rich detail by Ray Kurzweil in [34, 35]; and we find it a reasonably
convincing one. Of course, projecting the future growth curves of technologies
is a very risky business. But there’s very little doubt that creating AGI in this
way is physically possible.

In this sense, creating AGI is “just an engineering problem.” We know
that general intelligence is possible, in the sense that humans — particular
configurations of atoms — display it. We just need to analyze these atom
configurations in detail and replicate them in the computer. AGI emerges as
a special case of nanotechnology and in silico physics.

Perhaps a book on the same topic as this one, written in 2025 or so, will
contain detailed scientific papers pursuing the detailed-brain-simulation ap-
proach to AGI. At present, however, it is not much more than a futuristic
speculation. We don’t understand enough about the brain to make detailed
simulations of brain function. Our brain scanning methods are improving



18 Pennachin and Goertzel

rapidly but at present they don’t provide the combination of temporal and
spatial acuity required to really map thoughts, concepts, percepts and actions
as they occur in human brains/minds.

It’s still possible, however, to use what we know about the human brain to
structure AGI designs. This can be done in many different ways. Most simply,
one can take a neural net based approach, trying to model the behavior of
nerve cells in the brain and the emergence of intelligence therefrom. Or one
can proceed at a higher level, looking at the general ways that information
processing is carried out in the brain, and seeking to emulate these in software.

Stephen Grossberg [25, 28] has done extensive research on the modeling
of complex neural structures. He has spent a great deal of time and effort in
creating cognitively-plausible neural structures capable of spatial perception,
shape detection, motion processing, speech processing, perceptual grouping,
and other tasks. These complex brain mechanisms were then used in the
modeling of learning, attention allocation and psychological phenomena like
schizophrenia and hallucinations.

From the experiences modeling different aspects of the brain and the hu-
man neural system in general, Grossberg has moved on to the linking between
those neural structures and the mind [26, 27, 28]. He has identified two key
computational properties of the structures: complementary computing and
laminar computing.

Complementary computing is the property that allows different processing
streams in the brain to compute complementary properties. This leads to a
hierarchical resolution of uncertainty, which is mostly evident in models of the
visual cortex. The complementary streams in the neural structure interact,
in parallel, resulting in more complete information processing. In the visual
cortex, an example of complementary computing is the interaction between
the what cortical stream, which learns to recognize what events and objects
occur, and the where cortical stream, which learns to spacially locate those
events and objects.

Laminar computing refers to the organization of the cerebral cortex (and
other complex neural structures) in layers, with interactions going bottom-
up, top-down, and sideways. While the existence of these layers has been
known for almost a century, the contribution of this organization for control
of behavior was explained only recently. [28] has recently shed some light on
the subject, showing through simulations that laminar computing contributes
to learning, development and attention control.

While Grossberg’s research has not yet described complete minds, only
neural models of different parts of a mind, it is quite conceivable that one
could use his disjoint models as building blocks for a complete AGI design. His
recent successes explaining, to a high degree of detail, how mental processes
can emerge from his neural models is definitely encouraging.

Steve Grand’s Creatures [24] are social agents, but they have an elaborate
internal architecture, based on a complex neural network which is divided
into several lobes. The original design by Grand had explicit AGI goals, with
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attention paid to allow for symbol grounding, generalization, and limited lan-
guage processing. Grand’s creatures had specialized lobes to handle verbal
input, and to manage the creature’s internal state (which was implemented
as a simplified biochemistry, and kept track of feelings such as pain, hunger
and others). Other lobes were dedicated to adaptation, goal-oriented decision
making, and learning of new concepts.

Representing the neural net approach in this book, we have Peter Voss’s
paper on the a2i2 architecture. a2i2 is in the vein of other modern work on
reinforcement learning, but it is unique in its holistic architecture focused
squarely on AGI. Voss uses several different reinforcement and other learning
techniques, all acting on a common network of artificial neurons and synapses.
The details are original, but are somewhat inspired by prior neural net Al
approaches, particularly the “neural gas” approach [41], as well as objectivist
epistemology and cognitive psychology. Voss’s theory of mind abstracts what
would make brains intelligent, and uses these insights to build artificial brains.

Voss’s approach is incremental, involving a gradual progression through
the “natural” stages in the complexity of intelligence, as observed in children
and primates — and, to some extent, recapitulating evolution. Conceptually,
his team is adding ever more advanced levels of cognition to its core design,
somewhat resembling both Piagetian stages of development, as well as the
evolution of primates, a level at which Voss considers there is enough com-
plexity on the neuro-cognitive systems to provide AGI with useful metaphors
and examples.

His team seeks to build ever more complex virtual primates, eventually
reaching the complexity and intelligence level of humans. But this metaphor
shouldn’t be taken too literally. The perceptual and action organs of their
initial proto-virtual-ape are not the organs of a physical ape, but rather visual
and acoustic representations of the Windows environment, and the ability
to undertake simple actions within Windows, as well as various probes for
interaction with the real world through vision, sound, etc.

There are echoes of Rodney Brooks’s subsumption robotics work, the well-
known Cog project at MIT [1], in the a2i2 approach. Brooks is doing something
a lot more similar to actually building a virtual cockroach, with a focus on the
robot body and the pragmatic control of it. Voss’s approach to AI could easily
be nested inside robot bodies like the ones constructed by Brooks’s team; but
Voss doesn’t believe the particular physical embodiment is the key, he believes
that the essence of experience-based reinforcement learning can be manifested
in a system whose inputs and outputs are “virtual.”

6 Emulating the Human Mind

Emulating the atomic structure of the brain in a computer is one way to let
the brain guide AGI; creating virtual neurons, synapses and activations is
another. Proceeding one step further up the ladder of abstraction, one has
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approaches that seek to emulate the overall architecture of the human brain,
but not the details by which this architecture is implemented. Then one has
approaches that seek to emulate the human mind, as studied by cognitive
psychologists, ignoring the human mind’s implementation in the human brain
altogether.

Traditional logic-based AT clearly falls into the “emulate the human mind,
not the human brain” camp. We actually have no representatives of this ap-
proach in the present book; and so far as we know, the only current research
that could fairly be described as lying in the intersection of traditional logic-
based Al and AGI is the Cyc project, briefly mentioned above.

But traditional logic-based Al is far from the only way to focus on the
human mind. We have several contributions in this book that are heavily
based on cognitive psychology and its ideas about how the mind works. These
contributions pay greater than zero attention to neuroscience, but they are
clearly more mind-focused than brain-focused.

Wang’s NARS architecture, mentioned above, is the closest thing to a
formal logic based system presented in this book. While it is not based specif-
ically on any one cognitive science theory, NARS is clearly closely motivated
by cognitive science ideas; and at many points in his discussion, Wang cites
cognitive psychology research supporting his ideas.

Next, Hoyes’s paper on 3D vision as the key to AGI is closely inspired by
the human mind and brain, although it does not involve neural nets or other
micro-level brain-simulative entities. Hoyes is not proposing to copy the precise
wiring of the human visual system in silico and use it as the core of an AGI
system, but he is proposing that we should copy what he sees as the basic
architecture of the human mind. In a daring and speculative approach, he
views the ability to deal with changing 3D scenes as the essential capability
of the human mind, and views other human mental capabilities largely as
offshoots of this. If this theory of the human mind is correct, then one way to
achieve AGI is to do as Hoyes suggests and create a robust capability for 3D
simulation, and build the rest of a digital mind centered around this capability.

Of course, even if this speculative analysis of the human mind is correct,
it doesn’t intrinsically follow that 3D simulation centric approach is the only
approach to AGI. One could have a mind centered around another sense, or a
mind that was more cognitively rather than perceptually centered. But Hoyes’
idea is that we already have one example of a thinking machine — the human
brain — and it makes sense to use as much of it as we can in designing our
new digital intelligences.

Eliezer Yudkowsky, in his chapter, describes the conceptual foundations
of his AGI approach, which he calls “deliberative general intelligence” (DGI).
While DGI-based AGI is still at the conceptual-design phase, a great deal of
analysis has gone into the design, so that DGI essentially amounts to an orig-
inal and detailed cognitive-science theory, crafted with AGI design in mind.
The DGI theory was created against the backdrop of Yudkowsky’s futurist
thinking, regarding the notions of:
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e a Seed Al an AGI system that progressively modifies and improves its own
codebase, thus projecting itself gradually through exponentially increasing
levels of intelligence; [58]

o a Friendly AI, an AGI system that respects positive ethics such as the
preservation of human life and happiness, through the course of its pro-
gressive self-improvements.

However, the DGI theory also may stand alone, independently of these
motivating concepts.

The essence of DGI is a functional decomposition of general intelligence
into a complex supersystem of interdependent internally specialized processes.
Five successive levels of functional organization are posited:

Code The source code underlying an Al system, which Yudkowsky views as
roughly equivalent to neurons and neural circuitry in the human brain.

Sensory modalities In humans: sight, sound, touch, taste, smell. These gen-
erally involve clearly defined stages of information-processing and feature-
extraction. An AGI may emulate human senses or may have different sorts
of modalities.

Concepts Categories or symbols abstracted from a system’s experiences. The
process of abstraction is proposed to involve the recognition and then
reification of a similarity within a group of experiences. Once reified, the
common quality can then be used to determine whether new mental im-
agery satisfies the quality, and the quality can be imposed on a mental
image, altering it.

Thoughts Conceived of as being built from structures of concepts. By im-
posing concepts in targeted series, the mind builds up complex mental
images within the workspace provided by one or more sensory modali-
ties. The archetypal example of a thought, according to Yudkowsky, is
a human sentence — an arrangement of concepts, invoked by their sym-
bolic tags, with internal structure and targeting information that can be
reconstructed from a linear series of words using the constraints of syn-
tax, constructing a complex mental image that can be used in reasoning.
Thoughts (and their corresponding mental imagery) are viewed as dispos-
able one-time structures, built from reusable concepts, that implement a
non-recurrent mind in a non-recurrent world.

Deliberation Implemented by sequences of thoughts. This is the internal
narrative of the conscious mind — which Yudkowsky views as the core of
intelligence both human and digital. It is taken to include explanation,
prediction, planning, design, discovery, and the other activities used to
solve knowledge problems in the pursuit of real-world goals.

Yudkowsky also includes an interesting discussion of probable differences
between humans and AI’s. The conclusion of this discussion is that, eventu-
ally, AGI’s will have many significant advantages over biological intelligences.
The lack of motivational peculiarities and cognitive biases derived from an
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evolutionary heritage will make artificial psychology quite different from, and
presumably far less conflicted than, human psychology. And the ability to
fully observe their own state, and modify their own underlying structures and
dynamics, will give AGI’s an ability for self-improvement vastly exceeding
that possessed by humans. These conclusions by and large pertain not only
to AGI designs created according to the DGI theory, but also to many other
AGI designs as well. However, according to Yudkowsky, AGI designs based
too closely on the human brain (such as neural net based designs) may not
be able to exploit the unique advantages available to digital intelligences.

Finally, the authors’ Novamente AI project has had an interesting relation-
ship with the human mind/brain, over its years of development. The Webmind
AT project, Novamente’s predecessor, was more heavily human brain/mind
based in its conception. As Webmind progressed, and then as Novamente was
created based on the lessons learned in working on Webmind, we found that
it was more and more often sensible to depart from human-brain/mind-ish
approaches to various issues, in favor of approaches that provided greater ef-
ficiency on available computer hardware. There is still a significant cognitive
psychology and neuroscience influence on the design, but not as much as there
was at the start of the project.

One may sum up the diverse relationships between AGI approaches and
the human brain/mind by distinguishing between:

e approaches that draw their primary structures and dynamics from an at-
tempt to model biological brains;

e approaches like DGI and Novamente that are explicitly guided by the
human brain as well as the human mind,;

e approaches like NARS that are inspired by the human mind much more
than the human brain;

e approaches like OOPS that have drawn very little on known science about
human intelligence in any regard.

7 Creating Intelligence by Creating Life

If simulating the brain molecule by molecule is not ambitious enough for you,
there is another possible approach to AGI that is even more ambitious, and
even more intensely consumptive of computational resources: simulation of
the sort of evolutionary processes that gave rise to the human brain in the
first place.

Now, we don’t have access to the primordial soup from which life pre-
sumably emerged on Earth. So, even if we had an adequately powerful su-
percomputer, we wouldn’t have the option to simulate the origin of life on
Earth molecule by molecule. But we can try to emulate the type of process
by which life emerged — cells from organic molecules, multicellular organisms
from unicellular ones, and so forth.
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This variety of research falls into the domain of artificial life rather than
AT proper. Alife is a flourishing discipline on its own, highly active since the
early 1990’s. We will briefly review some of the best known projects in the
area. While most of this research still focuses on the creation and evolution of
either very unnatural or quite simplistic creatures, there are several projects
that have managed to give rise to fascinating levels of complexity.

Tierra, by Thomas Ray [45] was one of the earlier proposals toward an ar-
tificial evolutionary process that generates life. Tierra was successful in giving
rise to unicellular organisms (actually, programs encoded in a 32-instruction
machine language). In the original Tierra, there was no externally defined fit-
ness function — the fitness emerged as a consequence of each creature’s ability
to replicate itself and adapt to the presence of other creatures.

Eventually, Tierra would converge to a stable state, as a consequence of
the creature’s optimization of their replication code. Ray then decided to
explore the emergence of multicellular creatures, using the analogy of parallel
processes in the digital environment. Enter Network Tierra [46], which was a
distributed system providing a simulated landscape for the creatures, allowing
migration and exploitation of different environments. Multicellular creatures
emerged, and a limited degree of cell differentiation was observed in some
experiments [47]. Unfortunately, the evolvability of the system wasn’t high
enough to allow greater complexity to emerge.

The Avida platform, developed at Caltech, is currently the most used ALife
platform, and work on the evolution of complex digital creatures continues.

Walter Fontana’s AlChemy [14, 13] project focuses on addressing a dif-
ferent, but equally important and challenging issue — defining a theory of
biological organization which allows for self-maintaining organisms, i.e., or-
ganisms which possess a metabolic system capable of sustaining their persis-
tence. Fontana created an artificial chemistry based on two key abstractions:
constructiveness (the interaction between components can generate new com-
ponents. In chemistry, when two molecules collide, new molecules may arise
as a consequence.) and the existence of equivalence classes (the property that
the same final result can be obtained by different reaction chains). Fontana’s
artificial chemistry uses lambda calculus as a minimal system presenting those
key features.

From this chemistry, Fontana develops his theory of biological organiza-
tion, which is a theory of self-maintaining systems. His computer simulations
have shown that networks of interacting lambda-expressions arise which are
self-maintaining and robust, being able to repair themselves when components
are removed. Fontana called these networks organizations, and he was able
to generate organizations capable of self-duplication and maintenance, as well
as the emergence of self-maintaining metaorganizations composed of single
organizations.
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8 The Social Nature of Intelligence

All the AT approaches discussed so far essentially view the mind as something
associated with a single organism, a single computational system. Social psy-
chologists, however, have long recognized that this is just an approximation.
In reality the mind is social — it exists, not in isolated individuals, but in
individuals embedded in social and cultural systems.

One approach to incorporating the social aspect of mind is to create indi-
vidual AGI systems and let them interact with each other. For example, this
is an important part of the Novamente Al project, which involves a special
language for Novamente Al systems to use to interact with each other. An-
other approach, however, is to consider sociality at a more fundamental level,
and to create systems from the get-go that are at least as social as they are
intelligent.

One example of this sort of approach is Steve Grand’s neural-net architec-
ture as embodied in the Creatures game [24]. His neural net based creatures
are intended to grow more intelligent by interacting with each other — strug-
gling with each other, learning to outsmart each other, and so forth.

John Holland’s classifier systems [30] are another example of a multi-agent
system in which competition and cooperation are both present. In a classifier
system, a number of rules co-exist in the system at any given moment. The
system interacts with an external environment, and must react appropriately
to the stimuli received from the environment. When the system performs the
appropriate actions for a given perception, it is rewarded. While the individ-
uals in Holland’s system are quite primitive, recent work by Eric Baum [5]
has used a similar metaphor with more complex individuals, and promising
results on some large problems.

In order to decide how to answer to the perceived stimuli, the system
will perform multiple rounds of competition, during which the rules bid to be
activated. The winning rule will then either perform an internal action, or an
external one. Internal actions change the system’s internal state and affect the
next round of bidding, as each rule’s right to bid (and, in some variations, the
amount it bids) depends on how well it matches the system’s current state.

Eventually, a rule will be activated that will perform an external action,
which may trigger reward from the environment. The reward is then shared
by all the rules that have been active since the stimuli were perceived. The
credit assignment algorithm used by Holland is called bucket brigade. Rules
that receive rewards can bid higher in the next rounds, and are also allowed
to reproduce, which results in the creation of new rules.

Another important example of social intelligence is presented in the re-
search inspired by social insects. Swarm Intelligence [6] is the term that gener-
ically describes such systems. Swarm Intelligence systems are a new class of
biologically inspired tools.

These systems are self-organized, relying on direct and indirect commu-
nication between agents to lead to emergent behavior. Positive feedback is
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given by this communication (which can take the form of a dance indicating
the direction of food in bee colonies, or pheromone trails in ant societies),
which biases the future behavior of the agents in the system. These systems
are naturally stochastic, relying on multiple interactions and on a random,
exploratory component. They often display highly adaptive behavior to a dy-
namic environment, having thus been applied to dynamic network routing [9].
Given the simplicity of the individual agents, Swarm Intelligence showcases
the value of cooperative emergent behavior in an impressive way.

Ant Colony Optimization [11] is the most popular form of Swarm Intelli-
gence. ACO was initially designed as a heuristic for NP-hard problems [12],
but has since been used in a variety of settings. The original version of ACO
was developed to solve the famous Traveling Salesman problem. In this sce-
nario, the environment is the graph describing the cities and their connections,
and the individual agents, called ants, travel in the graph.

Each ant will do a tour of the cities in the graph, iteratively. At each
city it will choose the next city to visit, based on a transition rule. This rule
considers the amount of pheromone in the links connecting the current city
and each of the possibilities, as well as a small random component. When the
ant completes its tour, it updates the pheromone trail in the links it has used,
laying an amount of pheromone proportional to the quality of the tour it has
completed. The new trail will then influence the choices of the ants in the
next iteration of the algorithm.

Finally, an important contribution from Artificial Life research is the An-
imat approach. Animats are biologically-inspired simulated or real robots,
which exhibit adaptive behavior. In several cases [33] animats have been
evolved to display reasonably complex artificial nervous systems capable of
learning and adaptation. Proponents of the Animat approach argue that AGI
is only reachable by embodied autonomous agents which interact on their own
with their environments, and possibly other agents. This approach places an
emphasis on the developmental, morphological and environmental aspects of
the process of Al creating.

Vladimir Red’ko’s self-organizing agent-system approach also fits partially
into this general category, having some strong similarities to Animat projects.
He defines a large population of simple agents guided by simple neural net-
works. His chapter describes two models for these agents. In all cases, the
agents live in a simulated environment in which they can move around, look-
ing for resources, and they can mate — mating uses the typical genetic oper-
ators of uniform crossover and mutation, which leads to the evolution of the
agent population.

In the simpler case, agents just move around and eat virtual food, accu-
mulating resources to mate. The second model in Red’ko’s work simulates
more complex agents. These agents communicate with each other, and mod-
ify their behavior based on their experience. None of the agents individually
are all that clever, but the population of agents as a whole can demonstrate
some interesting collective behaviors, even in the initial, relatively simplistic
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implementation. The agents communicate their knowledge about resources in
different points of the environment, thus leading to the emergence of adaptive
behavior.

9 Integrative Approaches

We have discussed a number of different approaches to AGI, each of which has
— at least based on a cursory analysis — strengths and weaknesses compared to
the others. This gives rise to the idea of integrating several of the approaches
together, into a single AGI system that embodies several different approaches.

Integrating different ideas and approaches regarding something as complex
and subtle as AGI is not a task to be taken lightly. It’s quite possible to
integrate two good ideas and obtain a bad idea, or to integrate two good
software systems and get a bad software system. To successfully integrate
different approaches to AGI requires deep reflection on all the approaches
involved, and unification on the level of conceptual foundations as well as
pragmatic implementation.

Several of the AGI approaches described in this book are integrative to
a certain extent. Voss’s a2i2 system integrates a number of different neural-
net-oriented learning algorithms on a common, flexible neural-net-like data
structure. Many of the algorithms he integrated have been used before, but
only in an isolated way, not integrated together in an effort to make a “whole
mind.” Wang’s NARS-based AI design is less strongly integrative, but it still
may be considered as such. It posits the NARS logic as the essential core
of AI, but leaves room for integrating more specialized AI modules to deal
with perception and action. Yudkowsky’s DGI framework is integrative in a
similar sense: it posits a particular overall architecture, but leaves some room
for insights from other Al paradigms to be used in filling in roles within this
architecture.

By far the most intensely integrative AGI approach described in the book,
however, is our own Novamente Al approach.

The Novamente Al Engine, the work of the editors of this volume and their
colleagues, is in part an original system and in part an integration of ideas
from prior work on narrow Al and AGI. The Novamente design incorporates
aspects of many previous Al paradigms such as genetic programming, neural
networks, agent systems, evolutionary programming, reinforcement learning,
and probabilistic reasoning. However, it is unique in its overall architecture,
which confronts the problem of creating a holistic digital mind in a direct and
ambitious way.

The fundamental principles underlying the Novamente design derive from
a novel complex-systems-based theory of mind called the psynet model, which
was developed in a series of cross-disciplinary research treatises published
during 1993-2001 [17, 16, 18, 19, 20]. The psynet model lays out a series of
properties that must be fulfilled by any software system if it is going to be an
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autonomous, self-organizing, self-evolving system, with its own understanding
of the world, and the ability to relate to humans on a mind-to-mind rather
than a software-program-to-mind level. The Novamente project is based on
many of the same ideas that underlay the Webmind AI Engine project carried
out at Webmind Inc. during 1997-2001 [23]; and it also draws to some extent
on ideas from Pei Wang’s Non-axiomatic Reasoning System (NARS) [54].

At the moment, a complete Novamente design has been laid out in detail
[21], but implementation is only about 25% complete (and of course many
modifications will be made to the design during the course of further im-
plementation). It is a C++ software system, currently customized for Linux
clusters, with a few externally-facing components written in Java. The overall
mathematical and conceptual design of the system is described in a paper
[22] and a forthcoming book [21]. The existing codebase implements roughly
a quarter of the overall design. The current, partially-complete codebase is
being used by the startup firm Biomind LLC, to analyze genetics and pro-
teomics data in the context of information integrated from numerous biolog-
ical databases. Once the system is fully engineered, the project will begin a
phase of interactively teaching the Novamente system how to respond to user
queries, and how to usefully analyze and organize data. The end result of this
teaching process will be an autonomous AGI system, oriented toward assisting
humans in collectively solving pragmatic problems.

10 The Outlook for AGI

The AGI subfield is still in its infancy, but it is certainly encouraging to
observe the growing attention that it has received in the past few years. Both
the number of people and research groups working on systems designed to
achieve general intelligence and the interest from outsiders have been growing.

Traditional, narrow Al does play a key role here, as it provides useful
examples, inspiration and results for AGI. Several such examples have been
mentioned in the previous sections in connection with one or another AGI
approach. Innovative ideas like the application of complexity and algorithmic
information theory to the mathematical theorization of intelligence and Al
provide valuable ground for AGI researchers. Interesting ideas in logic, neural
networks and evolutionary computing provide both tools for AGI approaches
and inspiration for the design of key components, as will be seen in several
chapters of this book.

The ever-welcome increase in computational power and the emergence of
technologies like Grid computing also contribute to a positive outlook for
AGI. While it is possible that, in the not too distant future, regular desktop
machines (or whatever form the most popular computing devices take 10 or
20 years from now) will be able to run AGI software comfortably, today’s
AGI prototypes are extremely resource intensive, and the growing availabil-
ity of world-wide computing farms would greatly benefit AGI research. The
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popularization of Linux, Linux-based clusters that extract considerable horse-
power from stock hardware, and, finally, Grid computing, are seen as great
advances, for one can never have enough CPU cycles.

We hope that the precedent set by these pioneers in AGI research will in-
spire young Al researchers to stray a bit off the beaten track and venture into
the more daring, adventurous and riskier path of seeking the creation of truly
general artificial intelligence. Traditional, narrow Al is very valuable, but, if
nothing else, we hope that this volume will help create the awareness that
AGI research is a very present and viable option. The complementary and
related fields are mature enough, the computing power is becoming increas-
ingly easier and cheaper to obtain, and AGI itself is ready for popularization.
We could always use yet another design for an artificial general intelligence in
this challenging, amazing, and yet friendly race toward the awakening of the
world’s first real artificial intelligence.
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Summary. Is there an “essence of intelligence” that distinguishes intelligent sys-
tems from non-intelligent systems? If there is, then what is it? This chapter sug-
gests an answer to these questions by introducing the ideas behind the NARS (Non-
axiomatic Reasoning System) project. NARS is based on the opinion that the essence
of intelligence is the ability to adapt with insufficient knowledge and resources. Ac-
cording to this belief, the author has designed a novel formal logic, and implemented
it in a computer system. Such a “logic of intelligence” provides a unified explana-
tion for many cognitive functions of the human mind, and is also concrete enough
to guide the actual building of a general purpose “thinking machine”.

1 Intelligence and Logic

1.1 To Define Intelligence

The debate on the essence of intelligence has been going on for decades, but
there is still little sign of consensus (this book itself is evidence of this).
In “mainstream AI”, the following are some representative opinions:

“Al is concerned with methods of achieving goals in situations in
which the information available has a certain complex character. The
methods that have to be used are related to the problem presented by
the situation and are similar whether the problem solver is human, a
Martian, or a computer program.” [19]

Intelligence usually means “the ability to solve hard problems”.
22]

“By ‘general intelligent action’ we wish to indicate the same scope
of intelligence as we see in human action: that in any real situation
behavior appropriate to the ends of the system and adaptive to the
demands of the environment can occur, within some limits of speed
and complexity.” [23]

Maybe it is too early to define intelligence. It is obvious that, after decades
of study, we still do not know very much about it. There are more questions
than answers. Any definition based on current knowledge is doomed to be
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revised by future work. We all know that a well-founded definition is usually
the result, rather than the starting point, of scientific research. However, there
are still reasons for us to be concerned about the definition of intelligence at
the current time. Though clarifying the meaning of a concept always helps
communication, this problem is especially important for AI. As a community,
Al researchers need to justify their field as a scientific discipline. Without a
(relatively) clear definition of intelligence, it is hard to say why Al is different
from, for instance, computer science or psychology. Is there really something
novel and special, or just fancy labels on old stuff? More vitally, every re-
searcher in the field needs to justify his/her research plan according to such
a definition. Anyone who wants to work on artificial intelligence is facing a
two-phase task: to choose a working definition of intelligence, then to produce
it in a computer.

A working definition is a definition concrete enough that you can directly
work with it. By accepting a working definition of intelligence, it does not
mean that you really believe that it fully captures the concept “intelligence”,
but that you will take it as a goal for your current research project.

Therefore, the lack of a consensus on what intelligence is does not prevent
each researcher from picking up (consciously or not) a working definition of
intelligence. Actually, unless you keep one (or more than one) definition, you
cannot claim that you are working on artificial intelligence.

By accepting a working definition of intelligence, the most important com-
mitments a researcher makes are on the acceptable assumptions and desired
results, which bind all the concrete work that follows. The defects in the def-
inition can hardly be compensated by the research, and improper definitions
will make the research more difficult than necessary, or lead the study away
from the original goal.

Before studying concrete working definitions of intelligence, we need to set
up a general standard for what makes a definition better than others.

Carnap met the same problem when he tried to clarify the concept “proba-
bility”. The task “consists in transforming a given more or less inexact concept
into an exact one or, rather, in replacing the first by the second”, where the
first may belong to everyday language or to a previous stage in the scientific
language, and the second must be given by explicit rules for its use [4].

According to Carnap, the second concept, or the working definition as it
is called in this chapter, must fulfill the following requirements [4]:

1. It is similar to the concept to be defined, as the latter’s vagueness permits.
2. It is defined in an ezact form.

3. It is fruitful in the study.

4. Tt is simple, as the other requirements permit.

It seems that these requirements are also reasonable and suitable for our
current purpose. Now let us see what they mean concretely to the working
definition of intelligence:
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Similarity (to standard usage). Though “intelligence” has no exact meaning
in everyday language, it does have some common usages with which the
working definition should agree. For instance, normal human beings are
intelligent, but most animals and machines (including ordinary computer
systems) are either not intelligent at all or much less intelligent than
human beings.

Exactness (or well-definedness). Given the working definition, whether (or
how much) a system is intelligent should be clearly decidable. For this rea-
son, intelligence cannot be defined in terms of other ill-defined concepts,
such as mind, thinking, cognition, intentionality, rationality, wisdom, con-
sciousness, and so on, though these concepts do have close relationships
with intelligence.

Fruitfulness (and instructiveness). The working definition should provide con-
crete guidelines for the research based on it — for instance, what assump-
tions can be accepted, what phenomena can be ignored, what properties
are desired, and so on. Most importantly, the working definition of in-
telligence should contribute to the solving of fundamental problems in
Al

Simplicity. Although intelligence is surely a complex mechanism, the working
definition should be simple. From a theoretical point of view, a simple
definition makes it possible to explore a theory in detail; from a practical
point of view, a simple definition is easy to use.

For our current purpose, there is no “right” or “wrong” working definition
for intelligence, but there are “better” and “not-so-good” ones. When compar-
ing proposed definitions, the four requirements may conflict with each other.
For example, one definition is more fruitful, while another is simpler. In such
a situation, some weighting and trade-off become necessary. However, there is
no evidence showing that in general the requirements cannot be satisfied at
the same time.

1.2 A Working Definition of Intelligence

Following the preparation of the previous section, we propose here a working
definition of intelligence:

Intelligence is the capacity of a system to adapt to its environment
while operating with insufficient knowledge and resources.

The environment of a system may be the physical world, or other informa-
tion processing systems (human or computer). In either case, the interactions
can be described by the experiences (or stimuli) and responses of the sys-
tem, which are streams of input and output information, respectively. For
the system, perceivable patterns of input and producible patterns of output
constitute its interface language.

To adapt means that the system learns from its experiences. It adjusts its
internal structure to approach its goals, as if future situations will be similar
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to past situations. Not all systems adapt to their environment. For instance, a
traditional computing system gets all of its knowledge during its design phase.
After that, its experience does not contribute to its behaviors. To acquire new
knowledge, such a system would have to be redesigned.

Insufficient knowledge and resources means that the system works under
the following restrictions:

Finite. The system has a constant information-processing capacity.

Real-time. All tasks have time requirements attached.

Open. No constraints are put on the knowledge and tasks that the system
can accept, as long as they are representable in the interface language.

The two main components in the working definition, adaptation and insuf-
ficient knowledge and resources, are related to each other. An adaptive system
must have some insufficiency in its knowledge and resources, for otherwise it
would never need to change at all. On the other hand, without adaptation, a
system may have insufficient knowledge and resources, but make no attempt
to improve its capacities.

Not all systems take their own insufficiency of knowledge and resources
into full consideration. Non-adaptive systems, for instance, simply ignore new
knowledge in their interactions with their environment. As for artificial adap-
tive systems, most of them are not finite, real-time, and open, in the following
senses:

1. Though all actual systems are finite, many theoretical models (for ex-
ample, the Turing Machine) neglect the fact that the requirements for
processor time and/or memory space may go beyond the supply capacity
of the system.

2. Most current Al systems do not consider time constraints at run time.
Most real-time systems can handle time constraints only if they are es-
sentially deadlines [35].

3. Various constraints are imposed on what a system can experience. For
example, only questions that can be answered by retrieval and deduction
from current knowledge are acceptable, new knowledge cannot conflict
with previous knowledge, and so on.

Many computer systems are designed under the assumption that their
knowledge and resources, though limited or bounded, are still sufficient to fulfill
the tasks that they will be called upon to handle. When facing a situation
where this assumption fails, such a system simply panics or crashes, and asks
for external intervention by a human user.

For a system to work under the assumption of insufficient knowledge and
resources, it should have mechanisms to handle the following types of situa-
tion, among others:

e a new processor is required when all existent processors are occupied;
e extra memory is required when all available memory is already full;
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a task comes up when the system is busy with something else;

a task comes up with a time requirement, so exhaustive search is not an
option;

new knowledge conflicts with previous knowledge;

a question is presented for which no sure answer can be deduced from
available knowledge.

For traditional computing systems, these types of situations usually re-
quire human intervention or else simply cause the system to refuse to accept
the task or knowledge involved. However, for a system designed under the as-
sumption of insufficient knowledge and resources, these are normal situations,
and should be managed smoothly by the system itself. According to the above
definition, intelligence is a “highly developed form of mental adaptation” [26].

When defining intelligence, many authors ignore the complementary ques-
tion: what is unintelligent? If everything is intelligent, then this concept is
empty. Even if we agree that intelligence, like almost all properties, is a matter
of degree, we still need criteria to indicate what makes a system more intel-
ligent than another. Furthermore, for AI to be an (independent) discipline,
we require the concept “intelligence” to be different from other established
concepts, because otherwise we are only talking about some well-known stuff
with a new name, which is not enough to establish a new branch of science.
For example, if every computer system is intelligent, it is better to stay within
the theory of computation. Intuitively, “intelligent system” does not mean a
faster and bigger computer. On the other hand, an unintelligent system is
not necessarily incapable or gives only wrong results. Actually, most ordinary
computer systems and many animals can do something that human beings
cannot. However, these abilities do not earn the title “intelligent” for them.
What is missing in these capable-but-unintelligent systems? According to the
working definition of intelligence introduced previously, an unintelligent sys-
tem is one that does not adapt to its environment. Especially, in artificial
systems, an unintelligent system is one that is designed under the assumption
that it only works on problems for which the system has sufficient knowledge
and resources. An intelligent system is not always “better” than an unin-
telligent system for practical purposes. Actually, it is the contrary: when a
problem can be solved by both of them, the unintelligent system is usually
better, because it guarantees a correct solution. As Hofstadter said, for tasks
like adding two numbers, a “reliable but mindless” system is better than an
“intelligent but fallible” system [13].

1.3 Comparison With Other Definitions

Since it is impossible to compare the above definition to each of the existing
working definitions of intelligence one by one, we will group them into several
categories.

Generally speaking, research in artificial intelligence has two major mo-
tivations. As a field of science, we want to learn how the human mind, and
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“mind” in general, works; and as a branch of technology, we want to apply
computers to domains where only the human mind works well currently. Intu-
itively, both goals can be achieved if we can build computer systems that are
“similar to the human mind”. But in what sense they are “similar”? To dif-
ferent people, the desired similarity may involve structure, behavior, capacity,
function, or principle. In the following, we discuss typical opinions in each of
the five categories, to see where these working definitions of intelligence will
lead Al

To Simulate the Human Brain

Intelligence is produced by the human brain, so maybe AI should attempt
to simulate a brain in a computer system as faithfully as possible. Such an
opinion is put in its extreme form by neuroscientists Reeke and Edelman, who
argue that “the ultimate goals of AI and neuroscience are quite similar” [28].

Though it sounds reasonable to identify Al with brain model, few Al re-
searchers take such an approach in a very strict sense. Even the “neural net-
work” movement is “not focused on neural modeling (i.e., the modeling of
neurons), but rather ... focused on neurally inspired modeling of cognitive
processes” [30]. Why? One obvious reason is the daunting complezity of this
approach. Current technology is still not powerful enough to simulate a huge
neural network, not to mention the fact that there are still many mysteries
about the brain. Moreover, even if we were able to build a brain model at the
neuron level to any desired accuracy, it could not be called a success of Al,
though it would be a success of neuroscience.

AT is more closely related to the concept “model of mind” — that is, a high-
level description of brain activity in which biological concepts do not appear
[32]. A high-level description is preferred, not because a low-level description
is impossible, but because it is usually simpler and more general. A distinctive
characteristic of Al is the attempt to “get a mind without a brain” — that is,
to describe mind in a medium-independent way. This is true for all models: in
building a model, we concentrate on certain properties of an object or process
and ignore irrelevant aspects; in so doing, we gain insights that are hard to
discern in the object or process itself. For this reason, an accurate duplication
is not a model, and a model including unnecessary details is not a good model.
If we agree that “brain” and “mind” are different concepts, then a good model
of brain is not a good model of mind, though the former is useful for its own
sake, and helpful for the building of the latter.

To Duplicate Human Behaviors

Given that we always judge the intelligence of other people by their behavior,
it is natural to use “reproducing the behavior produced by the human mind
as accurately as possible” as the aim of AI. Such a working definition of
intelligence asks researchers to use the Turing Test [36] as a sufficient and
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necessary condition for having intelligence, and to take psychological evidence
seriously.

Due to the nature of the Turing Test and the resource limitations of a
concrete computer system, it is out of question for the system to have pre-
stored in its memory all possible questions and proper answers in advance,
and then to give a convincing imitation of a human being by searching such
a list. The only realistic way to imitate human performance in a conversation
is to produce the answers in real time. To do this, it needs not only cognitive
faculties, but also much prior “human experience” [9]. Therefore, it must
have a body that feels human, it must have all human motivations (including
biological ones), and it must be treated by people as a human being — so it
must simply be an “artificial human”, rather than a computer system with
artificial intelligence.

As French points out, by using behavior as evidence, the Turing Test is a
criterion solely for human intelligence, not for intelligence in general [9]. Such
an approach can lead to good psychological models, which are valuable for
many reasons, but it suffers from “human chauvinism” [13] — we would have
to say, according to the definition, that the science-fiction alien creature E.
T. was not intelligent, because it would definitely fail the Turing Test.

Though “reproducing human (verbal) behavior” may still be a sufficient
condition for being intelligent (as suggested by Turing), such a goal is difficult,
if not impossible, to achieve. More importantly, it is not a necessary condition
for being intelligent, if we want “intelligence” to be a more general concept
than “human intelligence”.

To Solve Hard Problems

In everyday language, “intelligent” is usually applied to people who can solve
hard problems. According to this type of definition, intelligence is the capacity
to solve hard problems, and how the problems are solved is not very important.

What problems are “hard”? In the early days of AI, many researchers
worked on intellectual activities like game playing and theorem proving. Nowa-
days, expert-system builders aim at “real-world problems” that crop up in
various domains. The presumption behind this approach is: “Obviously, ex-
perts are intelligent, so if a computer system can solve problems that only
experts can solve, the computer system must be intelligent, too”. This is why
many people take the success of the chess-playing computer Deep Blue as a
success of Al

This movement has drawn in many researchers, produced many practically
useful systems, attracted significant funding, and thus has made important
contributions to the development of the Al enterprise. Usually, the systems are
developed by analyzing domain knowledge and expert strategy, then building
them into a computer system. However, though often profitable, these systems
do not provide much insight into how the mind works. No wonder people
ask, after learning how such a system works, “Where’s the AI?” [31] — these
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systems look just like ordinary computer application systems, and still suffer
from great rigidity and brittleness (something AT wants to avoid).

If intelligence is defined as “the capacity to solve hard problems”, then the
next question is: “Hard for whom?” If we say “hard for human beings”, then
most existing computer software is already intelligent — no human can manage
a database as well as a database management system, or substitute a word in
a file as fast as an editing program. If we say “hard for computers,” then Al
becomes “whatever hasn’t been done yet,” which has been dubbed “Tesler’s
Theorem” [13]. The view that Al is a “perpetually extending frontier” makes
it attractive and exciting, which it deserves, but tells us little about how it
differs from other research areas in computer science — is it fair to say that the
problems there are easy? If Al researchers cannot identify other commonalities
of the problems they attack besides mere difficulty, they will be unlikely to
make any progress in understanding and replicating intelligence.

To Carry out Cognitive Functions

According to this view, intelligence is characterized by a set of cognitive func-
tions, such as reasoning, perception, memory, problem solving, language use,
and so on. Researchers who subscribe to this view usually concentrate on just
one of these functions, relying on the idea that research on all the functions
will eventually be able to be combined, in the future, to yield a complete pic-
ture of intelligence. A “cognitive function” is often defined in a general and
abstract manner. This approach has produced, and will continue to produce,
tools in the form of software packages and even specialized hardware, each of
which can carry out a function that is similar to certain mental skills of human
beings, and therefore can be used in various domains for practical purposes.
However, this kind of success does not justify claiming that it is the proper
way to study Al To define intelligence as a “toolbox of functions” has serious
weaknesses.

When specified in isolation, an implemented function is often quite dif-
ferent from its “natural form” in the human mind. For example, to study
analogy without perception leads to distorted cognitive models [5]. Even if we
can produce the desired tools, this does not mean that we can easily combine
them, because different tools may be developed under different assumptions,
which prevents the tools from being combined.

The basic problem with the “toolbox” approach is: without a “big picture”
in mind, the study of a cognitive function in an isolated, abstracted, and often
distorted form simply does not contribute to our understanding of intelligence.

A common counterargument runs something like this: “Intelligence is very
complex, so we have to start from a single function to make the study
tractable.” For many systems with weak internal connections, this is often
a good choice, but for a system like the mind, whose complexity comes di-
rectly from its tangled internal interactions, the situation may be just the
opposite. When the so-called “functions” are actually phenomena produced
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by a complex-but-unified mechanism, reproducing all of them together (by
duplicating the mechanism) is simpler than reproducing only one of them.

To Develop New Principles

According to this type of opinions, what distinguishes intelligent systems and
unintelligent systems are their postulations, applicable environments, and ba-
sic principles of information processing.

The working definition of intelligence introduced earlier belongs to this cat-
egory. As a system adapting to its environment with insufficient knowledge
and resources, an intelligent system should have many cognitive functions, but
they are better thought of as emergent phenomena than as well-defined tools
used by the system. By learning from its experience, the system potentially
can acquire the capacity to solve hard problems — actually, hard problems are
those for which a solver (human or computer) has insufficient knowledge and
resources — but it has no such built-in capacity, and thus, without proper
training, no capacity is guaranteed, and acquired capacities can even be lost.
Because the human mind also follows the above principles, we would hope
that such a system would behave similarly to human beings, but the similar-
ity would exist at a more abstract level than that of concrete behaviors. Due
to the fundamental difference between human experience/hardware and com-
puter experience/hardware, the system is not expected to accurately repro-
duce masses of psychological data or to pass a Turing Test. Finally, although
the internal structure of the system has some properties in common with a
description of the human mind at the subsymbolic level, it is not an attempt
to simulate a biological neural network.

In summary, the structure approach contributes to neuroscience by build-
ing brain models, the behavior approach contributes to psychology by pro-
viding explanations of human behavior, the capacity approach contributes to
application domains by solving practical problems, and the function approach
contributes to computer science by producing new software and hardware for
various computing tasks. Though all of these are valuable for various reasons,
and helpful in the quest after Al, these approaches do not, in my opinion,
concentrate on the essence of intelligence.

To be sure, what has been proposed in my definition of intelligence is not
entirely new to the Al community. Few would dispute the proposition that
adaptation, or learning, is essential for intelligence. Moreover, “insufficient
knowledge and resources” is the focus of many subfields of Al, such as heuristic
search, reasoning under uncertainty, real-time planning, and machine learning.
Given this situation, what is new in this approach? It is the following set of
principles:

1. an explicit and unambiguous definition of intelligence as “adaptation un-
der insufficient knowledge and resources”;

2. a further definition of the phrase “with insufficient knowledge and re-
sources” as finite, real-time, and open;
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3. the design of all formal and computational aspects of the project keeping
the two previous definitions foremost in mind.

1.4 Logic and Reasoning Systems

To make our discussion more concrete and fruitful, let us apply the above
working definition of intelligence to a special type of information processing
system — reasoning system.

A reasoning system usually has the following components:

1. a formal language for knowledge representation, as well as communication
between the system and its environment;

2. a semantics that determines the meanings of the words and the truth
values of the sentences in the language;

3. a set of inference rules that match questions with knowledge, infer con-
clusions from promises, and so on;

4. a memory that systematically stores both questions and knowledge, and
provides a working place for inferences;

5. a control mechanism that is responsible for choosing premises and infer-
ence rules for each step of inference.

The first three components are usually referred to as a logic, or the logical
part of the reasoning system, and the last two as the control part of the system.

According to the previous definition, being a reasoning system is neither
necessary nor sufficient for being intelligent. However, an intelligent reasoning
system does provide a suitable framework for the study of intelligence, for the
following reasons:

e It is a general-purpose system. Working in such a framework keeps us from
being bothered by domain-specific properties, and also prevents us from
cheating by using domain-specific tricks.

e Compared with cognitive activities like low-level perception and motor
control, reasoning is at a more abstract level, and is one of the cognitive
skills that collectively make human beings so qualitatively different from
other animals.

e The framework of reasoning system is highly flexible and expendable. We
will see that we can carry out many other cognitive activities in it when
the concept of “reasoning” is properly extended.

e Most research on reasoning systems is carried out within a paradigm based
on assumptions directly opposed to the one presented above. By “fighting
in the backyard of the rival”, we can see more clearly what kinds of effects
the new ideas have.

Before showing how an intelligent reasoning system is designed, let us first
see its opposite — that is, a reasoning system designed under the assumption
that its knowledge and resources are sufficient to answer the questions asked
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by its environment (so no adaptation is needed). By definition, such a system
has the following properties:

1. No new knowledge is necessary. All the system needs to know to answer
the questions is already there at the very beginning, expressed by a set of
axioms.

2. The axioms are true, and will remain true, in the sense that they corre-
spond to the actual situation of the environment.

3. The system answers questions by applying a set of formal rules to the
axioms. The rules are sound and complete (with respect to the valid ques-
tions), therefore they guarantee correct answers for all questions.

4. The memory of the system is so big that all axioms and intermediate
results can always be contained within it.

5. There is an algorithm that can carry out any required inference in finite
time, and it runs so fast that it can satisfy all time requirements that may
be attached to the questions.

This is the type of system dreamed of by Leibniz, Boole, Hilbert, and many
others. It is usually referred to as a “decidable axiomatic system” or a “formal
system”. The attempt to build such systems has dominated the study of logic
for a century, and has strongly influenced the research of artificial intelligence.
Many researchers believe that such a system can serve as a model of human
thinking.

However, if intelligence is defined as “to adapt under insufficient knowledge
and resources”, what we want is the contrary, in some sense, to an axiomatic
system, though it is still formalized or symbolized in a technical sense. There-
fore Non-aziomatic Reasoning System (NARS) is chosen as the name for the
intelligent reasoning system to be introduced in the following sections.

Between “pure-axiomatic” systems and “non-axiomatic” ones, there are
also “semi-axiomatic” systems. They are designed under the assumption that
knowledge and resources are insufficient in some, but not all, aspects. Conse-
quently, adaptation is necessary. Most current reasoning systems developed for
AT fall into this category. According to our working definition of intelligence,
pure-axiomatic systems are not intelligent at all, non-axiomatic systems are
intelligent, and semi-axiomatic systems are intelligent in certain aspects.

Pure-axiomatic systems are very useful in mathematics, where the aim is
to idealize knowledge and questions to such an extent that the revision of
knowledge and the deadlines of questions can be ignored. In such situations,
questions can be answered so accurately and reliably that the procedure can
be reproduced by a Turing Machine. We need intelligence only when no such
pure-axiomatic method can be used, due to the insufficiency of knowledge and
resources. For the same reason, the performance of a non-axiomatic system is
not necessarily better than that of a semi-axiomatic system, but it can work
in environments where the latter cannot be used.

Under the above definitions, intelligence is still (as we hope) a matter
of degree. Not all systems in the “non-axiomatic” and “semi-axiomatic” cate-
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gories are equally intelligent. Some systems may be more intelligent than some
other systems due to a higher resources efficiency, using knowledge in more
ways, communicating with the environment in a richer language, adapting
more rapidly and thoroughly, and so on.

“Non-axiomatic” does not mean “everything changes”. In NARS, nothing
is fixed as far as the content of knowledge is concerned, but as we will see
in the following sections, how the changes happen is fixed, according to the
inference rules and control strategy of the system, which remain constant
when the system is running. This fact does not make NARS “semi-axiomatic”,
because the fixed part is not in the “object language” level, but in the “meta-
language” level. In a sense, we can say that the “meta-level” of NARS is not
non-axiomatic, but pure-axiomatic. For a reasoning system, a fixed inference
rule is not the same as an axiom.

Obviously, we can allow the “meta-level” of NARS to be non-axiomatic,
too, and therefore give the system more flexibility in its adaptation. However,
that approach is not adopted in NARS at the current stage, for the following
reasons:

e “Complete self-modifying” is an illusion. As Hofstadter put it, “below
every tangled hierarchy lies an inviolate level” [13]. If we allow NARS
to modify its meta-level knowledge, i.e., its inference rules and control
strategy, we need to give it (fixed) meta-meta-level knowledge to specify
how the modification happens. As flexible as the human mind is, it cannot
modify its own “law of thought”.

e Though high-level self-modifying will give the system more flexibility, it
does not necessarily make the system more intelligent. Self-modifying at
the meta-level is often dangerous, and it should be used only when the
same effect cannot be produced in the object-level. To assume “the more
radical the changes can be, the more intelligent the system will be” is
unfounded. It is easy to allow a system to modify its own source code, but
hard to do it right.

e In the future, we will explore the possibility of meta-level learning in
NARS, but will not attempt to do so until the object-level learning is
mature. To try everything at the same time is just not a good engineering
approach, and this does not make NARS less non-axiomatic, according to
the above definition.

Many arguments proposed previously against logical Al [2, 20], symbolic
AT [7], or AT as a whole [32, 25], are actually against a more specific target:
pure-axiomatic systems. These arguments are powerful in revealing that many
aspects of intelligence cannot be produced by a pure-axiomatic system (though
these authors do not use this term), but some of them are misleading by using
such a system as the prototype of Al research. By working on a reasoning
system, with its formal language and inference rules, we do not necessarily
bind ourselves with the commitments accepted by the traditional “logical AI”
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paradigms. As we will see in the following, NARS shares more philosophical
opinions with the subsymbolic, or connectionist movement [15, 17, 30, 34].

What is the relationship of artificial intelligence and computer science?
What is the position of Al in the whole science enterprise? Traditionally,
Al is referred to as a branch of computer science. According to our previ-
ous definitions, Al can be implemented with the tools provided by computer
science, but from a theoretical point of view, they make opposite assump-
tions: computer science focuses on pure-axiomatic systems, while Al focuses
on non-axiomatic systems. The fundamental assumptions of computer science
can be found in mathematical logic (especially first-order predicate logic) and
computability theory (especially Turing Machine). These theories take the
sufficiency of knowledge and resources as implicit postulates, therefore adap-
tation, plausible inference, and tentative solutions of problems are neither
necessary nor possible.

Similar assumptions are often accepted by Al researchers with the follow-
ing justification: “We know that the human mind usually works with insuf-
ficient knowledge and resources, but if you want to set up a formal model
and then a computer system, you must somehow idealize the situation.” It is
true that every formal model is an idealization, and so is NARS. The prob-
lem is what to omit and what to preserve in the idealization. In the current
implementation of NARS, many factors that should influence reasoning are
ignored, but the insufficiency of knowledge and resources is strictly assumed
throughout. Why? Because it is a definitive feature of intelligence, so if it were
lost through the “idealization”, the resulting study would be about something
else.

2 The Components of NARS

Non-axiomatic Reasoning System (NARS) is designed to be an intelligent rea-
soning system, according to the working definition of intelligence introduced
previously.

In the following, let us see how the major components of NARS (its formal
language, semantics, inference rules, memory, and control mechanism) are
determined, or strongly suggested, by the definition, and how they differ from
the components of an axiomatic system. Because this chapter is concentrated
in the philosophical and methodological foundation of the NARS project,
formal descriptions and detailed discussions for the components are left to
other papers [39, 40, 42].

2.1 Experience-Grounded Semantics

Axiomatic reasoning systems (and most semi-axiomatic systems) use “model-
theoretic semantics”. Informally speaking, a model is a description of a do-
main, with relations among objects specified. For a reasoning system working
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on the domain, an “interpretation” maps the terms in the system to the ob-
jects in the model, and the predicates in the systems to the relations in the
model. For a given term, its meaning is its image in the model under the
interpretation. For a given proposition, its truth value depends on whether
it corresponds to a fact in the model. With such a semantics, the reasoning
system gets a constant “reference”, the model, according to which truth and
meaning within the system is determined. Though model-theoretic seman-
tics comes in different forms, and has variations, this “big picture” remains
unchanged.

This kind of semantics is not suitable for NARS. As an adaptive sys-
tem with insufficient knowledge and resources, the system cannot judge the
truthfulness of its knowledge against a static, consistent, and complete model.
Instead, truth and meaning have to be grounded on the system’s experience
[40]. Though a section of experience is also a description of the system’s envi-
ronment, it is fundamentally different from a model, since experience changes
over time, is never complete, and is often inconsistent. Furthermore, experi-
ence is directly accessible to the system, while model is often “in the eye of
an observer”.

According to an experience-grounded semantics, truth value becomes a
function of the amount of available evidence, therefore inevitably becomes
changeable and subjective, though not arbitrary. In such a system, no knowl-
edge is “true” in the sense that it is guaranteed to be confirmed by future
experience. Instead, the truth value of a statement indicates the degree to
which the statement is confirmed by past experience. The system will use
such knowledge to predict the future, because it is exactly what “adaptive”,
and therefore “intelligent”, means. In this way, “truth” has quite different
(though closely related) meanings in non-axiomatic systems and axiomatic
systems.

Similarly, the meaning of a term, that is, what makes the term different
from other terms to the system, is determined by its relationships to other
terms, according to the system’s experience, rather than by an interpretation
that maps it into an object in a model.

With insufficient resources, the truth value of each statement and the
meaning of each term in NARS is usually grounded on part of the experience.
As a result, even without new experience, the inference activity of the system
will change the truth values and meanings, by taking previously available-but-
ignored experience into consideration. On the contrary, according to model-
theoretic semantics, the internal activities of a system have no effects on truth
value and meaning of the language it uses.

“Without an interpretation, a system has no access to the semantics of a
formal language it uses” is the central argument in Searle’s “Chinese room”
thought experiment against strong AI [32]. His argument is valid for model-
theoretic semantics, but not for experience-grounded semantics. For an intel-
ligent reasoning system, the latter is more appropriate.
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2.2 Inheritance Statement

As discussed above, “adaptation with insufficient knowledge and resources”
demands an experience-grounded semantics, which in turn requires a formal
knowledge representation language in which evidence can be naturally defined
and measured.

For a non-axiomatic reasoning system, it is obvious that a binary truth
value is not enough. With past experience as the only guidance, the system
not only needs to know whether there is counter example (negative evidence),
but also needs to know its amount, with respect to the amount of positive
evidence. To have a domain-independent method to compare competing an-
swers, a numerical truth value, or a measurement of uncertainty, becomes
necessary for NARS, which quantitatively records the relationship between a
statement and available evidence. Furthermore, “positive evidence” and “ir-
relevant stuftf” need to be distinguished too.

Intuitively speaking, the simplest case to define evidence is for a gen-
eral statement about many cases, while some of them are confirmed by past
experience (positive evidence), and some others are disconfirmed by past ex-
perience (negative evidence). Unfortunately, the most popular formal lan-
guage for knowledge representation, first-order predicate calculus, cannot
be easily used in this way. In this language, a “general statement”, such
as “Ravens are black”, is represented as a “universal proposition”, such as
“(Vz)(Raven(x) — Black(x))”. In the original form of first-order predicate
calculus, there is no such a notion as “evidence”, and the proposition is either
true or false, depending on whether there is such an object x in the domain
that makes Raven(x) true and Black(x) false. It is natural to define constants
that make the proposition true as its positive evidence, and the constants that
make it false its negative evidence. However, such a naive solution has serious
problems [40, 44]:

e Only the existence of negative evidence contributes to the truth value of
the universal proposition, while whether there is “positive evidence” does
not matter. This is the origin Popper’s refutation theory [27].

e Fvery constant is either a piece of positive evidence or a piece of negative
evidence, and nothing is irrelevant. This is related to Hempel’s conforma-
tion paradox [11].

Though evidence is hard to define in predicate calculus, it is easy to do
in a properly designed categorical logic. Categorical logics, or term logics, is
another family of formal logic, exemplified by Aristotle’s Syllogism [1]. The
major formal features that distinguish it from predicate logic are the use of
subject—predicate statements and syllogistic inference rules. Let us start with
the first feature.

NARS uses a categorical language that is based on an inheritance relation,
“—”_ The relation, in its ideal form, is a reflexive and transitive binary relation
defined on terms, where a term can be thought as the name of a concept. For
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example, “raven — bird” is an inheritance statement with “raven” as subject
term and “bird” as predicate term. Intuitively, it says that the subject is
a specialization of the predicate, and the predicate is a generalization of the
subject. The statement roughly corresponds to the English sentence “Raven is
a kind of bird”. Based on the inheritance relation, the extension and intension
of a term are defined as the set of its specializations and generalizations,
respectively. That is, for a given term T, its extension T is the set {z | z —
T}, and its intension 77 is the set {z | T — z}. Given the reflexivity and
transitivity of the inheritance relation, it can be proved that for any terms
S and P, “S — P” is true if and only if S¥ is included in P¥, and P! is
included in S’. In other words, “There is an inheritance relation from S to
P?” is equivalent to “P inherits the extension of .S, and S inherits the intension
of P”.

When considering “imperfect” inheritance statements, the above theorem
naturally gives us the definition of (positive and negative) evidence. For a
given statement “S — P7, if a term M in both S¥ and P¥, or in both P!
and ST, then it is a piece of positive evidence for the statement, because as
far as M is concerned, the proposed inheritance is true; if M in S but not
in PP, or in P! but not in S’ then it is a piece of negative evidence for
the statement, because as far as M is concerned, the proposed inheritance is
false; if M is neither in S¥ nor in P’, it is not evidence for the statement,
and whether it is also in P¥ or ST does not matter. Let us use wT, w™, and
w for the amount of positive, negative, and total evidence, respectively, then
we have wt = |S¥ N PE| + PN SI|, w™ = |SF — PE| + |PT - 81|, w =
wt +w™ = |SE|+|P!|. Finally, we define the truth value of a statement to be
a pair of numbers <f, ¢>. Here f is called the frequency of the statement, and
f =w" /w. The second component c is called the confidence of the statement,
and ¢ = w/(w+ k), where k is a system parameter with 1 as the default value.
For a more detailed discussion, see [43].

Now we have the technical basics of the experience-grounded semantics: If
the experience of the system is a set of inheritance statements defined above,
then for any term T, we can determine its meaning, which is its extension
and intension (according to the experience), and for any inheritance state-
ment “S — P”, we can determine its positive evidence and negative evidence
(by comparing the meaning of the two terms), then calculate its truth value
according to the above definition.

Of course, the actual experience of NARS is not a set of binary inheritance
statements, nor does the system determine the truth value of a statement in
the above way. The actual experience of NARS is a stream of statements,
with their truth values represented by the <f, ¢> pairs. Within the system,
new statements are derived by the inference rules, with truth-value functions
calculating the truth values of the conclusions from those of the premises. The
purpose of the above definitions is to define the truth value in an idealized
situation, and to provide a foundation for the truth value functions (to be
discussed in the following).
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2.3 Categorical Language

Based on the inheritance relation introduced above, NARS uses a powerful
“categorical language”, obtained by extending the above core language in
various directions:

Derived inheritance relations: Beside the inheritance relation defined previ-
ously, NARS also includes several of its variants. For example,

e the similarity relation < is symmetric inheritance;

e the instance relation o— is an inheritance relation where the subject
term is treated as an atomic instance of the predicate term;

e the property relation —o is an inheritance relation where the predicate
term is treated as a primitive property of the subject term.

Compound terms: In inheritance statements, the (subject and predicate)
terms not only can be simple names (as in the above examples), but also
can be compound terms formed by other terms with logical operator. For
example, if A and B are terms, we have
e their extensional intersection (AN B) is a compound term, defined by

(AN B)F = (AP N BF) and (AN B)! = (AT U BY).

o their intensional intersection (AU B) is a compound term, defined by
(AU B)F = (AF U BF) and (AU B)! = (A n BY);

With compound terms, the expressive power of the language is greatly

extended.

Ordinary relation: In NARS, only the inheritance relation and its variants
are defined as logic constants that are directly recognized by the inference
rules. All other relations are converted into inheritance relations with
compound terms. For example, an arbitrary relation R among three terms
A, B, and C is usually written as R(A, B, ('), which can be equivalently
rewritten as one of the following inheritance statements (i.e., they have
the same meaning and truth value):

o “(A,B,C)— R”, where the subject term is a compound (4, B, C), an
ordered tuple. This statement says “The relation among A, B, C (in
that order) is an instance of the relation R.”

e “A— R(x,B,C)”, where the predicate term is a compound R(x, B, C)
with a “wild-card”, . This statement says “A is such an x that satisfies
R(z,B,C).

e “B— R(A,*,C)”. Similarly, “B is such an z that satisfies R(A, z,C).”

e “C'— R(A,B,x)". Again, “C is such an x that satisfies R(A, B, x).”

Higher-order term: In NARS, a statement can be used as a term, which is
called a “higher-order” term. For example, “Bird is a kind of animal” is
represented by statement “bird — animal”’, and “Tom knows that bird
is a kind of animal” is represented by statement “(bird — animal)o—
know(Tom, x)”, where the subject term is a statement. Compound higher-
order terms are also defined: if A and B are higher-order terms, so do their
negations (—A and —B), disjunction (A V B), and conjunction (A A B).
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Higher-order relation: Higher-order relations are those whose subject term
and predicate term are both higher-order terms. In NARS, there are two
defined as logic constants:

e implication, “=", which is intuitively correspond to “if-then”;

e cquivalence, “<”, which is intuitively correspond to “if and only if”.

Non-declarative sentences: Beside the various types of statements introduced
above, which represent the system’s declarative knowledge, the formal
language of NARS uses similar formats to represent non-declarative sen-
tences:

e a question is either a statement whose truth value needs to be evalu-
ated (“yes/no” questions), or a statement containing variables to be
instantiated (“what” questions);

e a goal is a statement whose truthfulness needs to be established by the
system through the execution of relevant operations.

For each type of statements, its truth value is defined similarly to how we
define the truth value of an inheritance statement.

With the above structures, the expressive power of the language is roughly
the same as a typical natural language (such as English or Chinese). There is
no one-to-one mapping between sentences in this language and those in first-
order predicate calculus, though approximate mapping is possible for many
sentences. While first-order predicate calculus may still be better to repre-
sent mathematical knowledge, this new language will be better to represent
empirical knowledge.

2.4 Syllogistic Inference Rules

Due to insufficient knowledge, the system needs to do non-deductive inference,
such as induction, abduction, and analogy, to extend past experience to novel
situations. In this context, deduction becomes fallible, too, in the sense that
its conclusion may be revised by new knowledge, even if the premises remain
unchallenged. According to the experience-grounded semantics, the definition
of validity of inference rules is changed. Instead of generating infallible conclu-
sions, a valid rule should generate conclusions whose truth values are evaluated
against (and only against) the evidence provided by the premises.

As mentioned previously, a main feature that distinguish term logics from
predicate/propositional logics is the use of syllogistic inference rules, each
of which takes a pair of premises that share a common term. For inference
among inheritance statements, there are three possible combinations if the
two premises share exactly one term:

deduction induction abduction
M — P<fi,c;> M — P<fi,0> P — M <fi,c1>
S — M <f2, > M — S <f2, Cco> S — M <f2, Cco>

S — P<f, > S — P<f, c> S — P<f, c>
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Each inference rule has its own truth-value function to calculate the truth
value of the conclusion according to those of the premises. In NARS, these
functions are designed in the following way:

1. Treat all relevant variables as binary variables taking 0 or 1 values, and
determine what values the conclusion should have for each combination
of premises, according to the semantics.

2. Represent the truth values of the conclusion obtained above as Boolean
functions of those of the premises.

3. Extend the Boolean operators into real number functions defined on [0,
1] in the following way:

not(zx) =1—=x
and(Ty, ..., Tp) = T1 % ... * Ty,
or(1,cn) =1—=(1—x1) % ..x (1 —xp)
4. Use the extended operators, plus the relationship between truth value and
amount of evidence, to rewrite the above functions.
The result is the following:
deduction induction abduction

f=hfr f=h f=r
c=cicaf1fz ¢ = facica/(facica + 1) ¢ = ficica/(ficica + 1)

When the two premises have the same statement, but comes from different
sections of the experience, the revision rule is applied to merge the two into
a summarized conclusion:

revision

S — P<f1, c1>
S — P<f2, Co>

S — P<f, c>

Since in revision the evidence for the conclusion is the sum of the evidence in
the premises, the truth-value function is

f= frer/(1—c1)+faca/(1—c2)
T a/(l-c)tea/(1-c2)

_ a/(l-ci)+ez/(1—c2)
- Cl/(1761)+62/(1762)+1'

Beside the above four basic inference rules, in NARS there are inference
rules for the variations of inheritance, as well as for the formation and trans-
formation of the various compound terms. The truth-value functions for those
rules are similarly determined.
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Beside the above forward inference rules by which new knowledge is derived
existing knowledge, NARS also has backward inference rules, by which a piece
of knowledge is applied to a question or a goal. If the knowledge happens to
provide an answer for the question or an operation to realize the goal, it is
accepted as a tentative solution, otherwise a derived question or goal may
be generated, whose solution, combined with the knowledge, will provide a
solution to the original question or goal. Defined in this way, for each forward
rule, there is a matching backward rule. Or, conceptually, we can see them as
two ways to use the same rule.

2.5 Controlled Concurrency in Dynamic Memory

As an open system working in real time, NARS accepts new tasks all the
time. A new task may be a piece of knowledge to be digested, a question to
be answered, or a goal to be achieved. A new task may come from a human
user or from another computer system.

Since in NARS no knowledge is absolutely true, the system will try to use
as much knowledge as possible to process a task, so as to provide a better
(more confident) solution. On the other hand, due to insufficient resources,
the system cannot use all relevant knowledge for each task. Since new tasks
come from time to time, and the system generates derived tasks constantly, at
any moment the system typically has a large amount of tasks to process. For
this situation, it is too rigid to set up a static standard for a satisfying solution
[35], because no matter how careful the standard is determined, sometimes it
will be too high, and sometimes too low, given the ever changing resources
demand of the existing tasks. What NARS does is to try to find the best
solution given the current knowledge and resources restriction [40] — similar
to what an “anytime algorithm” does [6].

A “Bag” is a data structure specially designed in NARS for resource al-
location. A bag can contain certain type of items with a constant capacity,
and maintains a priority distribution among the items. There are three major
operations defined on bag:

e Put an item into the bag, and if the bag is already full, remove an item
with the lowest priority.
Take an item out of the bag by key (i.e., its unique identifier).
Take an item out of the bag by priority, that is, the probability for an item
to be selected is proportional to its priority value.

Each of the operations takes a constant time to finish, independent of the
number of items in the bag.

NARS organizes knowledge and tasks into concepts. In the system, a term
T has a corresponding concept Cp, which contains all the knowledge and
tasks in which T is the subject term or predicate term. For example, knowledge
“bird — animal <1, 0.9>" is stored within the concept Cy;-q and the concept
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Clanimal- In this way, the memory of NARS can be seen roughly as a bag of
concepts, and each concept is named by a (simple or compound) term, and
contains a bag of knowledge and a bag of tasks, all of them are directly about
the term.

[\

NARS runs by repeatedly carrying out the following working cycle:

. Take a concept from the memory by priority.
. Take a task from the task bag of the concept by priority.
. Take a piece of knowledge from the knowledge bag of the concept by

priority.

. According to the combination of the task and the knowledge, call the

applicable inference rules on them to derive new tasks and new knowledge
— in a term logic, every inference step happens within a concept.

. Adjust the priority of the involved task, knowledge, and concept, according

to how they behave in this inference step, then put them back into the
corresponding bags.

. Put the new (input or derived) tasks and knowledge into the corresponding

bags. If certain new knowledge provides the best solution so far for a user-
assigned task, report a solution.

The priority value of each item reflects the amount of resources the system

plans to spend on it in the near future. It has two factors:

Long-term factor. The system gives higher priority to more important

items, evaluated according to past experience. Initially, the user can as-
sign priority values to the input tasks to indicate their relative impor-
tance, which will in turn determine the priority value of the concepts and
knowledge generated from it. After each inference step, the involved items
have their priority values adjusted. For example, if a piece of knowledge
provides a best-so-far solution for a task, then the priority value of the
knowledge is increased (so that it will be used more often in the future),
and the priority value of the task is decreased (so that less time will be
used on it in the future).

Short-term factor. The system gives higher priority to more relevant items,

evaluated according to current context. When a new task is added into
the system, the directly related concepts are activated, i.e., their priority
values are increased. On the other hand, the priority values decay over
time, so that if a concept has not been relevant for a while, it becomes
less active.

In this way, NARS processes many tasks in parallel, but with different

speeds. This “controlled concurrency” control mechanism is similar to Hofs-
tadter’s “parallel terraced scan” strategy [14]. Also, how a task is processed
depends on the available knowledge and the priority distribution among con-
cepts, tasks, and knowledge. Since these factors change constantly, the solution
a task gets is context-dependent.
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3 The Properties of NARS

As a project aimed at general-purpose artificial intelligence, NARS addresses
many issues in Al and cognitive science. Though it is similar to many other
approaches here or there, the project as a whole is unique in its theoretical
foundation and major technical components. Designed as above, NARS shows
many properties that make it more similar to human reasoning than other Al
systems are.

3.1 Reasonable Solutions

With insufficient knowledge and resources, NARS cannot guarantee that all
the solutions it generates for tasks are correct in the sense that they will not
be challenged by the system’s future experience. Nor can it guarantee that the
solutions are optimum given all the knowledge the system has at the moment.
However, the solutions are reasonable in the sense that they are the best
summaries of the past experience, given the current resources supply. This is
similar to Good’s “Type II rationality” [10].

NARS often makes “reasonable mistakes” that are caused by the insuffi-
ciency of knowledge and resources. They are reasonable and inevitable given
the working condition of the system, and they are not caused by the errors in
the design or function of the system.

A conventional algorithm provides a single solution to each problem, then
stops working on the problem. On the contrary, NARS may provide no, one,
or more than one solution to a task — it reports every solution that is the
best it finds, then looks for a better one (if resources are still available).
Of course, eventually the system will end its processing of the task, but the
reason is neither that a satisfying solution has been found, nor that a deadline
is reached, but that the task has lost in the resources competition.

Like trial-and-error procedures [18], NARS can “change its mind”. Because
truth values are determined according to experience, a later solution is judged
as “better” than a previous one, because it is based on more evidence, though
it is not necessarily “closer to the objective fact”.

When a solution is found, usually there is no way to decide whether it
is the last the system can get. In NARS, there is no “final solution” that
cannot be updated by new knowledge and/or further consideration, because
all solutions are based on partial experience of the system. This self-revisable
feature makes NARS a more general model than the various non-monotonic
logics, in which only binary statements are processed, and only the conclusions
derived from default rules can be updated, but the default rules themselves
are not effected by the experience of the system [29].
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3.2 Unified Uncertainty Processing

As described previously, in NARS there are various types of uncertainty, in
concepts, statements, inference rules, and inference processes. NARS has a
unified uncertainty measurement and calculation sub-system.

What makes this approach different from other proposed theories on uncer-
tainty is the experience-grounded semantics. According to it, all uncertainty
comes from the insufficiency of knowledge and resources. As a result, the
evaluation of uncertainty is changeable and context-dependent.

From our previous definition of truth value, it is easy to recognize its rela-
tionship with probability theory. Under a certain interpretation, the frequency
measurement is similar to probability, and the confidence measurement is re-
lated to the size of sample space. If this is the case, why not directly use
probability theory to handle uncertainty?

Let us see a concrete case. The deduction rule takes “M — P < f1, ¢1 >”
and “S — M < fs, co >" as premises, and derives “S — P < f, ¢>" as con-
clusion. A direct way to apply probability theory would be treating each term
as a set, then turning the rule into one that calculates conditional probabil-
ity Pr(P|S) from Pr(P|M) and Pr(M]|S) plus additional assumptions about
the probabilistic distribution function Pr(). Similarly, the sample size of the
conclusion would be estimated, which gives the confidence value.

Such an approach cannot be applied in NARS for several reasons:

e For an inheritance relation, evidence is defined both extensionally and
intensionally, so the frequency of “S — P” cannot be treated as Pr(P|S),
since the latter is purely extensional.

e Fach statement has its own evidence space, defined by the extension of its
subject and the intension of its predicate.

e Since pieces of knowledge in input may come from different sources, they
may contain inconsistency.

e  When new knowledge comes, usually the system cannot afford the time to
update all of the previous beliefs accordingly.

Therefore, though each statement can be treated as a probabilistic judg-
ment, different statements correspond to different evidence space, and their
truth values are evaluated against different bodies of evidence. As a result,
they correspond to different probability distributions. For example, if we treat
frequency as probability, the deduction rule should calculate Pr3(S — P) from
Pri(M — P) and Pro(S — M). In standard probability theory, there is few
result that can be applied to this kind of cross-distribution calculation.

NARS solves this problem by going beyond probability theory, though still
sharing certain intuition and result with it [43].

In NARS, the amount of evidence is defined in such a way that it can be
used to indicate randomness (see [37] for a comparison with Bayesian network
[24]), fuzziness (see [41] for a comparison with fuzzy logic [45]), and ignorance
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(see [38] for a comparison with Dempster-Shafer theory [33]). Though dif-
ferent types of uncertainty have different origins, they usually co-exist, and
are tangled with one another in practical situations. Since NARS makes no
restrictions on what can happen in its experience, and needs to make jus-
tifiable decisions when the available knowledge is insufficient, such a unified
measurement of uncertainty is necessary.

There may be belief conflicts in NARS, in the sense that the same state-
ment is assigned different truth values when derived from different parts of
the experience. With insufficient resources, NARS cannot find and eliminate
all implicit conflicts within its knowledge base. What it can do is, when a con-
flict is found, to generate a summarized conclusion whose truth value reflects
the combined evidence. These conflicts are normal, rather than exceptional.
Actually, their existence is a major driving force of learning, and only by
their solutions some types of inference, like induction and abduction, can
have their results accumulated [39]. In first-order predicate logic, a pair of
conflicting propositions implies all propositions. This does not happen in a
term logic like NARS, because in term logics the conclusions and premises
must have shared terms, and statements with the same truth value cannot
substitute one another in a derivation (as does in predicate logic). As a result,
NARS tolerates implicitly conflicting beliefs, and resolves explicit conflicts by
evidence combination.

The concepts in NARS are uncertain because the meaning of a concept is
not determined by an interpretation that links it to an external object, but
by its relations with other concepts. The relations are in turn determined by
the system’s experience and its processing of the experience. When a concept
is involved in the processing of a task, usually only part of the knowledge
associated with the concept is used. Consequently, concepts become “fluid”
[16]:

1. No concept has a clear-cut boundary. Whether a concept is an instance
of another concept is a matter of degree. Therefore, all the concepts in
NARS are “fuzzy”.

2. The membership evaluations are revisable. The priority distribution among
the relations from a concept to other concepts also changes from time to
time. Therefore, what a concept actually means to the system is variable.

3. However, the meaning of a concept is not arbitrary or random, but rela-
tively stable, bounded by the system’s experience.

3.3 NARS as a Parallel and Distributed Network

Though all the previous descriptions present NARS as a reasoning system
with formal language and rules, in fact the system can also be described as
a network. We can see each term as a node, and each statement as a link
between two nodes, and the corresponding truth value as the strength of the
link. Priorities are defined among nodes and links. In each inference step, two
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adjacent links generate new links, and different types of inference correspond
to different combinations of the links [22, 39]. To answer a question means
to determine the strength of a link, given its beginning and ending node, or
to locate a node with the strongest link from or to a given node. Because by
applying rules, the topological structure of the network, the strength of the
links, and the priority distribution are all changed, what the system does is
much more than searching a static network for the desired link or node.

Under such an interpretation, NARS shows some similarity to the other
network-based Al approaches, such as the connectionist models.

Many processes coexist at the same time in NARS. The system not only
processes input tasks in parallel, but also does so for the derived subtasks.
The fact that the system can be implemented in a single-processor machine
does not change the situation, because what matters here is not that the
processes run exactly at the same time on several pieces of hardware (though
it is possible for NARS to be implemented in a multiple-processor system),
but that they are not run in a one-by-one way, that is, one process begins
after another ends.

Such a parallel processing model is adopted by NARS, because given the
insufficiency of knowledge and resources, as well as the dynamic nature of the
memory structure and resources competition, it is impossible for the system
to process tasks one after another.

Knowledge in NARS is represented distributedly in the sense that there
is no one-to-one correspondence between the input/output in the experi-
ence/response and the knowledge in the memory [12]. When a piece of new
knowledge is provided to the system, it is not simply inserted into the mem-
ory. Spontaneous inferences will happen, which generate derived conclusions.
Moreover, the new knowledge may be revised when it is in conflict with previ-
ous knowledge. As a result, the coming of new knowledge may cause non-local
effects in memory.

On the other hand, the answer of a question can be generated by non-
local knowledge. For example, in answering the question “Is dove a kind of
bird?”, a piece of knowledge “dove — bird” (with its truth value) stored in
concepts dove and bird provides a ready-made answer, but the work does
not stop. Subtasks are generated (with lower priority) and sent to related
concepts. Because there may be implicit conflicts within the knowledge base,
the previous “local” answer may be revised by knowledge stored somewhere
else.

Therefore, the digestion of new knowledge and the generation of answers
are both non-local events in memory, though the concepts corresponding to
terms that appear directly in the input knowledge/question usually have larger
contributions. How “global” such an event can be is determined both by the
available knowledge and the resources allocated to the task.

In NARS, information is not only stored distributively and with duplica-
tions, but also processed through multiple pathways. With insufficient knowl-
edge and resources, when a question is asked or a piece of knowledge is told, it
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is usually impossible to decide whether it will cause redundancy or what is the
best method to process it, so multiple copies and pathways become inevitable.
Redundancy can help the system recover from partial damage, and also make
the system’s behaviors depend on statistical events. For example, if the same
question is repeatedly asked, it will get more processor time.

Unlike many symbolic AI systems, NARS is not “brittle” [17] — that
is, being easily “killed” by improper inputs. NARS is open and domain-
independent, so any knowledge and question, as long as they can be expressed
in the system’s interface language, can be accepted by the system. The conflict
between new knowledge and previous knowledge will not cause the “implica-
tion paradox” (i.e., from an inconsistence, any propositions can be derived).
All mistakes in input knowledge can be revised by future experience to vari-
ous extents. The questions beyond the system’s current capacity will no longer
cause a “combinatorial explosion”, but will be abandoned gradually by the
system, after some futile efforts. In this way, the system may fail to answer a
certain question, but such a failure will not cause a paralysis.

According to the working manner of NARS, each concept as a processing
unit only takes care of its own business, that is, only does inferences where
the concept is directly involved. As a result, the answering of a question is
usually the cooperation of several concepts. Like in connectionist models [30],
there is no “global plan” or “central process” that is responsible for each
question. The cooperation is carried out by message-passing among concepts.
The generating of a specific solution is the emergent result of lots of local
events, not only caused by the events in its derivation path, but also by the
activity of other tasks that adjust the memory structure and compete for the
resources. For this reason, each event in NARS is influenced by all the events
that happen before it.

What directly follows from the above properties is that the solution to a
specific task is context-sensitive. It not only depends on the task itself and the
knowledge the system has, but also depends on how the knowledge is organized
and how the resources are allocated at the moment. The context under which
the system is given a task, that is, what happens before and after the task in
the system’s experience, strongly influences what solution the task receives.
Therefore, if the system is given the same task twice, the solutions may be
(though not necessarily) different, even though there is no new knowledge
provided to the system in the interval. Here “context” means the current
working environment in which a task is processed. Such contexts are dynamic
and continuous, and they are not predetermined situations indexed by labels
like “bank” and “hotel”.

3.4 Resources Competition

The system does not treat all processes as equal. It distributes its resources
among the processes, and only allows each of them to progress at certain
speed and to certain “depth” in the knowledge base, according to how much
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resources are available to the system. Also due to insufficient knowledge, the
resource distribution is maintained dynamically (adjusted while the processes
are running), rather than statically (scheduled before the processes begin to
run), because the distribution depends on how they work.

As a result, the processes compete with one another for resources. To speed
up one process means to slow down the others. The priority value of a task
reflects its (relative) priority in the competition, but does not determine its
(absolute) actual resources consumption, which also depends on the priority
values of the other coexisting tasks.

With insufficient processing time, it is inefficient for all the knowledge
and questions to be equally treated. In NARS, some of them (with higher
priority values) get more attention, that is, are more active or accessible,
while some others are temporarily forgotten. With insufficient memory space,
some knowledge and questions will be permanently forgotten — eliminated
from the memory. Like in human memory [21], in NARS forgetting is not a
deliberate action, but a side-effect caused by resource competition.

In traditional computing systems, the amount of time spent on a task
is determined by the system designer, and the user provides tasks at run
time without time requirements. On the other hand, many real-time systems
allow users to attach a deadline to a task, and the time spent on the task is
determined by the deadline [35]. A variation of this approach is that the task
is provided with no deadline, but the user can interrupt the process at any
time to get a best-so-far answer [3].

NARS uses a more flexible method to decide how much time to spend on
a task, and both the system and the user influence the decision. The user
can attaches an initial priority value to a task, but the actual allocation also
depends on the current situation of the system, as well as on how well the
task processing goes. As a result, the same task, with the same initial priority,
will get more processing when the system is “idle” than when the system is
“busy”.

3.5 Flexible Behaviors

In NARS, how an answer is generated is heavily dependent on what knowledge
is available and how it is organized. Facing a task, the system does not choose
a method first, then collect knowledge accordingly, but lets it interact with
available knowledge. In each inference step, what method is used to process a
task is determined by the type of knowledge that happens to be picked up at
that moment.

As a result, the processing path for a task is determined dynamically at
run time, by the current memory structure and resource distribution of the
system, not by a predetermined problem-oriented algorithm. In principle, the
behavior of NARS is unpredictable from an input task alone, though still
predictable from the system’s initial state and complete experience.
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For practical purposes, the behavior of NARS is not accurately predictable
to a human observer. To exactly predict the system’s solution to a specific task,
the observer must know all the details of the system’s initial state, and closely
follow the system’s experience until the solution is actually produced. When
the system is complex enough (compared with the information processing
capacity of the predictor), nobody can actually do this. However, it does
not mean that the system works in a random manner. Its behaviors are still
determined by its initial state and experience, so approximate predictions are
possible.

If NARS is implemented in a von Neumann computer, can it go beyond
the scope of computer science? Yes, it is possible because a computer system is
a hierarchy with many levels [13]. Some critics implicitly assume that because
a certain level of a computer system can be captured by first-order predicate
logic and Turing machine, these theories also bind all the performances the
system can have [7, 25]. This is not the case. When a system A is imple-
mented by a system B, the former does not necessarily inherit all properties
of the latter. For example, we cannot say that a computer cannot process
decimal numbers (because they are implemented by binary numbers), cannot
process symbols (because they are coded by digits), or cannot use functional
or logical programming language (because they are eventually translated into
procedural machine language).

Obviously, with its fluid concepts, revisable knowledge, and fallible in-
ference rules, NARS breaks the regulations of classic logics. However, as a
virtual machine, NARS can be based on another virtual machine which is a
pure-axiomatic system, as shown by its implementation practice, and this fact
does not make the system “axiomatic”. If we take the system’s complete expe-
rience and response as input and output, then NARS is still a Turing Machine
that definitely maps inputs to outputs in finite steps. What happens here has
been pointed out by Hofstadter as “something can be computational at one
level, but not at another level” [15], and by Kugel as “cognitive processes
that, although they involve more than computing, can still be modeled on the
machines we call ‘computers’ 7 [18]. On the contrary, traditional computer
systems are Turing Machines either globally (from experience to response) or
locally (from question to answer).

3.6 Autonomy and Creativity

The global behavior NARS is determined by the “resultant of forces” of its
internal tasks. Initially, the system is driven only by input tasks. The system
then derives subtasks recursively by applying inference rules to the tasks and
available knowledge.

However, it is not guaranteed that the achievement of the derived tasks will
turn out to be really helpful or even related to the original tasks, because the
knowledge, on which the derivation is based, is revisable. On the other hand,
it is impossible for the system to always determine correctly which tasks are
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more closely related to the original tasks. As a result, the system’s behavior
will to a certain extent depend on “its own tasks”, which are actually more
or less independent of the original processes, even though historically derived
from them. This is the functional autonomy phenomena [22]. In the extreme
form, the derived tasks may become so strong that they even prevent the
input tasks from being fulfilled. In this way, the derived tasks are alienated.

The alienation and unpredictability sometimes result in the system to be
“out of control”, but at the same time, they lead to creative and original be-
haviors, because the system is pursuing goals that are not directly assigned by
its environment or its innateness, with methods that are not directly deduced
from given knowledge.

By creativity, it does not mean that all the results of such behaviors are
of benefit to the system, or excellent according to some outside standards.
Nor does it mean that these behaviors come from nowhere, or from a “free
will” of some sort. On the contrary, it means that the behaviors are novel to
the system, and cannot be attributed either to the designer (who determines
the system’s initial state and skills) or to a tutor (who determines part of
the system’s experience) alone. Designers and tutors only make the creative
behaviors possible. What turns the possibility into reality is the system’s ex-
perience, and for a system that lives in a complex environment, its experience
is not completely determined by any other systems (human or computer). For
this reason, these behaviors, with their results, are better to be attributed to
the system itself, than to anyone else [13].

Traditional computer systems always repeat the following “life cycle”:

waiting for tasks

accepting a task

working on the task according to an algorithm
reporting a solution for the task

waiting for tasks

On the contrary, NARS has a “life-time of its own” [8]. When the system
is experienced enough, there will be many tasks for the system to process. On
the other hand, new input can come at any time. Consequently, the system’s
history is no longer like the previous loop. The system usually works on its
“own” tasks, but at the same time, it is always ready to respond to new
tasks provided by the environment. Each piece of input usually attracts the
system’s attention for a while, and also causes some long-term effects. The
system never reaches a “final state” and stops there, though it can be reset
by a human user to its initial state. In this way, each task-processing activity
is part of the system’s life-time experience, and is influenced by the other
activities. In comparison with NARS, traditional computer systems take each
problem-solving activity as a separate life cycle with a predetermined end.
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4 Conclusions

The key difference between NARS and the mainstream Al projects is not in
the technical details, but in the philosophical and methodological position.
The NARS project does not aim at a certain practical problem or cognitive
function, but attempts to build a general-purpose intelligent system by identi-
fying the “essence of intelligence”, i.e., the underlying information processing
principle, then designing the components of the system accordingly.

As described above, in the NARS project, it is assumed that “intelli-
gence” means “adaptation with insufficient knowledge and resources”, and
then a reasoning system is chosen as the framework to apply this assumption.
When designing the system, we found that all relevant traditional theories
(including first-order predicate logic, model theory, probability theory, com-
putability theory, computational complexity theory, ...) are inconsistent with
the above assumption, so all major components need to be redesigned. These
components, though technically simple, are fundamentally different from the
traditional components in nature.

Built in this way, NARS provides a unified model for many phenomena
observed in human cognition. It achieves this not by explicitly fitting psycho-
logical data, but by reproducing them from a simple and unified foundation.
In this way, we see that these phenomena share a common functional expla-
nation, and all intelligent systems, either natural or artificial, will show these
phenomena as long as they are adaptive systems working with insufficient
knowledge and resources.

The NARS project started in 1983 at Peking University. Several work-
ing prototypes have been built, in an incremental manner (that is, each with
more inference rules and a more complicated control mechanism). Currently
first-order inference has been finished, and higher-order inference is under
development. Though the whole project is still far from completion, past ex-
perience has shown the feasibility of this approach. For up-to-date information
about the project and the latest publications and demonstrations, please visit
http://wuw.cogsci.indiana.edu/farg/peiwang/papers.html.
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Summary. The Novamente AI Engine, a novel Al software system, is briefly re-
viewed. Novamente is an integrative artificial general intelligence design, which inte-
grates aspects of many prior Al projects and paradigms, including symbolic, prob-
abilistic, evolutionary programming and reinforcement learning approaches; but its
overall architecture is unique, drawing on system-theoretic ideas regarding complex
mental dynamics and associated emergent patterns. The chapter reviews both the
conceptual models of mind and intelligence which inspired the system design, and
the concrete architecture of Novamente as a software system.

1 Introduction

We present in this chapter the Novamente AI Engine, an integrative design
for an AGI. Novamente is based on over a decade of research (see [27, 26, 28,
29, 30]) and has been developed, on conceptual and software design levels, to
a significant extent. Through a decade and a half of research, we have created
a theoretical foundation for the design of Al systems displaying adaptive,
autonomous artificial intelligence, and we are in the midst of developing a
highly original, unprecedented software system atop this foundation.

Novamente incorporates aspects of many previous Al paradigms such as
agent systems, evolutionary programming, reinforcement learning, automated
theorem-proving, and probabilistic reasoning. However, it is unique in its over-
all architecture, which confronts the problem of creating a holistic digital mind
in a direct way that has not been done before. Novamente combines a com-
mon, integrative-Al friendly representation of knowledge, with a number of
different cognitive processes, which cooperate while acting on that knowledge.
This particular combination results in a complex and unique software system:
an autonomous, self-adaptive, experientially learning system, in which the co-
operation between the cognitive processes enables the emergence of general
intelligence. In short, Novamente is a kind of “digital mind.”

One way that Novamente differs from many other approaches to AGI is
that it is being developed primarily in a commercial, rather than academic,
context. While this presents some challenges in terms of prioritizing develop-
ment of different aspects of the system, we feel it has been a highly valuable
approach, for it has meant that, at each stage of the system’s development,
it has been tested on challenging real-world applications. Through our work
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on commercial applications of early, partial versions of the Novamente sys-
tem, we have become acutely aware of the urgent need for Artificial General
Intelligence, in various industries. Much is said about the information age,
knowledge discovery, and the need for tools that are smart enough to allow
human experts to cope with the unwieldy amounts of information in today’s
business and scientific worlds. We believe that the real answer for these ana-
lytical demands lies in AGI, as the current narrow techniques are unable to
properly integrate heterogeneous knowledge, derive intelligent inferences from
that knowledge and, most important, spontaneously generate new knowledge
about the world.

At the time of writing, the Novamente system is completely designed and
partially implemented. It can be applied to complex problems in specific do-
mains like bioinformatics and knowledge discovery right now, and will yield
ever greater functionality as more of the design is implemented and tested.
Of course, the design is continually changing in its details, in accordance
with the lessons inevitably learned in the course of implementation. How-
ever, these detail-level improvements occur within the overall framework of
the Novamente design, which has — so far — proved quite powerful and robust.

1.1 The Novamente AGI System

Given the pressing need for AGI from a practical perspective, there has been
surprisingly little recent R&D oriented specifically toward the AGI prob-
lem [64]. The AI discipline began with AGI dreams, but for quite some
time has been dominated by various forms of narrow Al, including logical-
inference-based Al, neural networks, evolutionary programming, expert sys-
tems, robotics, computer vision, and so forth. Many of these narrow-Al soft-
ware systems are excellent at what they do, but they have in common a focus
on one particular aspect of mental function, rather than the integration of nu-
merous aspects of mental function to form a coherent, holistic, autonomous,
situated cognitive system. Artificial General Intelligence requires a different
sort of focus. Table 2 briefly compares key properties of AGI and narrow Al
systems.

The authors and their colleagues have been working together for several
years on the problem of creating an adequate design for a true AGI system,
intended especially to lay the groundwork for AGI. We worked together during
1998-2001 on a proto-AGI system called Webmind [32], which was applied in
the knowledge management and financial prediction domains; and since 2001
we have been collaborating on Novamente.

The Novamente design incorporates aspects of many previous Al paradigms
such as evolutionary programming, symbolic logic, agent systems, and prob-
abilistic reasoning. However, it is extremely innovative in its overall architec-
ture, which confronts the problem of “creating a whole mind” in a direct way
that has not been done before. The fundamental principles underlying the sys-
tem design derive from a novel complex-systems-based theory of mind called
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the “psynet model,” which was developed by the author in a series of cross-
disciplinary research treatises published during 1993-2001 [27, 28, 29, 30].
What the psynet model has led us to is not a conventional Al program, nor
a conventional multi-agent-system framework. Rather, we are talking about
an autonomous, self-organizing, self-evolving AGI system, with its own under-
standing of the world, and the ability to relate to humans on a “mind-to-mind”
rather than a “software-program-to-mind” level.

The Novamente design is a large one, but the currently deployed imple-
mentation already incorporates many significant aspects. Due to the depth
of detail in the design, and the abundant pertinent prototyping experience
the Novamente engineering team had during the period 1997-2004, the time
required to complete the implementation will be less than one might expect
given the magnitude of the task: we estimate 1-2 years. The engineering phase
will be followed by a phase of interactively teaching the Novamente system
how to respond to user queries, and how to usefully analyze and organize data.
The end result of this teaching process will be an autonomous AGI system,
oriented toward assisting humans in collectively solving pragmatic problems.

This chapter reviews the Novamente AGI design and some of the issues
involved in its implementation, teaching and testing. Along the way we will
also briefly touch on some practical-application issues, and discuss the ways
in which even early versions of Novamente will provide an innovative, strik-
ingly effective solution to the problem of helping human analysts comprehend,
organize and analyze data in multiple, complex domains.

1.2 Novamente for Knowledge Management and Data Analysis

The Novamente AGI framework in itself is highly general, and may be ap-
plied in a variety of application contexts. For example, one could imagine
Novamente being used as the cognitive engine of an advanced robotic system;
in fact, a preliminary design for the hybridization of Novamente with James
R. Albus’s “Reference Model Architecture” for robotics [2] has been devel-
oped. Initially, however, our plan is to implement and deploy Novamente in
the context of knowledge management and data analysis. We believe that No-
vamente has some important benefits for these application areas, summarized
in Table 1. The current Novamente version is being used for management
and analysis of bioinformatic information, specifically genomic and proteomic
databases and experimental datasets; and for text understanding in the na-
tional security domain. Over the next few years, while continuing our current
application work, we envision a significantly broader initiative to apply the
system to the management and analysis of information in multiple domains.

The deployment of Novamente for knowledge management and analysis
involves attention to many different issues, most falling into the general cat-
egories of data sources and human-computer interaction. The optimal way of
handling such issues is domain-dependent. For the bioinformatics applications,
we have taken an approach guided by the particular needs of bioscientists
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Features of the Benefits for Knowledge Management,

Novamente Approach Querying and Analytics

Mixed natural /formal Flexible, agile, information-rich user interactions.

language conversational System learns from each user interaction

querying

Integrative knowledge Compact, manipulable representation of all common

representation forms of data, enables integrative analysis across
data items regardless of source or type

Powerful integrative Recognizes subtle patterns in diverse data.

cognition toolkit, including Combines known patterns to form new ones.
probabilistic inference and Interprets semantically rich user queries
evolutionary concept

creation

Probabilistic inference System shifts its focus of cognition based on user

based, nonlinear-dynamical queries, and also based on changing trends in the

attention-focusing world itself

DINI Distributed Enables implementation of massive self-organizing
Architecture Atom network on a network of commodity PC’s

Table 1: Features and benefits of the Novamente approach

analyzing datasets generated via high-throughput genomics and proteomics
equipment.

In terms of data sources, once one commits to take a knowledge integration
approach, the trickiest issue that remains is the treatment of natural language
data (“unstructured text”). Novamente may be used in two complementary
ways:

e “Information retrieval” oriented, wherein a text is taken as a series of
characters or a series of words, and analyzed statistically;

e Natural Language Processing (NLP) oriented, wherein an attempt is
made to parse the sentences in the texts and extract their meanings into
semantic-relationship form.

The information retrieval approach is appropriate when one has a large
volume of text, and limited processing time for handling it. The NLP approach
is more sophisticated and more computationally expensive.

The common weak point of existing NLP algorithms and frameworks is
the integration of semantic and pragmatic understanding into syntactic lan-
guage analysis. The Novamente design overcomes this problem by carrying
out syntactic analysis via logical unification, a process that automatically in-
corporates available semantic and pragmatic knowledge into its behavior. At
time of writing, we have not yet integrated the NLP component of Novamente
with logical unification, but our experience with a similar implementation in
the Webmind system gives us reasonable confidence here.

Regarding interaction with human users, the Novamente design supports a
variety of different modalities, including conventional search-engine and NLP
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queries, Web forms queries, dynamic visualization and automated report gen-
eration. The most innovative design we have conceived for human-Novamente
interaction, however, involves interactive conversation using a combination
of natural language and formal language. Table 3 gives a speculative exam-
ple of what we envision a dialogue in this vein might look like. The reality
of mixed human/formal language dialogue will be defined through practical
experimentation with the Novamente system in each different context.

System Characteristic Narrow AI AGI
Ability to Adapt Flexibly over Time NO YES
Ability to Integrate Dramatically NO YES
Diverse Data Sources

Ability to Deal with Unforeseen Sometimes YES
Situations

Ability to Dialogue with Humans Minimal YES
Ability to Perceive Subtle Data Sometimes YES
Patterns

Simple Algorithms Sometimes NO
Small Demand on Computing Sometimes NO
Resources

Requires Massive Human Knowledge Sometimes NO
Encoding Effort

Table 2: AGI versus narrow Al

User-interface-wise, AGI systems may live on the back end of conventional
software applications — but they may also be used to support radical new forms
of human-computer interaction. As an example of this, we propose to develop
an interface for mixed human/formal language conversation. A hypothetical
example of this sort of dialogue is given in Table 3. This sort of dialogue
does not require humans to learn to think like computers, and nor does it
require computers to try to precisely emulate humans. Rather, it involves
humans and computers each entering into one another’s modes of cognition
and description, and teaching and learning from each other in the process.

2 Enabling Software Technologies

The deep concepts underlying AGI are mathematical and theoretical, not de-
pendent on particular software or hardware technologies. However, the viabil-
ity of engineering, testing and deploying AGI systems, and applying them in
a data analysis/querying/management context, is less of an abstract matter,
and depends critically on the presence of appropriate enabling technologies.
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User: ‘‘I want information on Chinese-speaking residents of African
nations.’’

NM: Mandarin, Cantonese, or both?

User: Mandarin

NM: See the file ChineseAfrica.txt

User: Thanks

NM: Would you like information on African residents of Chinese
nations?

User: Not now. What I want is information on Chinese-speaking
residents of African nations who send their children to schools in
South America.

NM: Could you rephrase please?

User:

Find Y:

Inheritance(X, ‘‘African nation’’)

resident (Y, X)

speaks(Y, Chinese)

child_of(Z, Y)

attends(Z, W)

Inheritance(W, ‘‘school’’)

part_of (X: location(W, X), ‘‘South America’’)

NM: By

> child_of(Z, Y)

do you mean that Z is a child of Y?

User: Yes

NM: Thanks. See the file ChineseAfricaChildren.txt

V V V V V V VYV

Table 3: Hypothetical example of a mixed human/formal language conversation

Two categories of enabling technologies — distributed software architecture
and database integration — are particularly critical to practical AGI deploy-
ments. These are the subjects of the present section.

2.1 A Distributed Software Architecture for Integrative Al

Marvin Minsky, one of the fathers of Al is on record conjecturing that a
human-level artificial general intelligence could probably be made to run on a
1 Megahertz PC, if one merely knew the right design. Our AGI optimism, while
strong, is slightly different in nature. We believe that computing technology is
just now reaching the point where advanced AGI software becomes possible.
Having the correct design is still the most important thing; but the right design
without an adequate hardware platform and operating system will never leave
the world of theory.

In the 1980’s, specialized supercomputing hardware was one of the themes
of the day. Cray’s vector processing machines revolutionized computational
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physics and related areas, and Thinking Machines Corp.’s MIMD parallel
Connection Machine [38] architecture appeared poised to do the same thing
for artificial intelligence. What happened, however, was that the Connection
Machine was unable to keep pace with the incredibly rapid development of
conventional von Neumann hardware, and technology for networking tradi-
tional machines together. The last Connection Machine created before Think-
ing Machine Corp.’s dissolution, the CM-5, was less radical than its predeces-
sors, being based on traditional processors coupled in an unusually tight way.
And similarly, today’s most powerful supercomputers, IBM’s [11], are actually
distributed computers underneath — they’re specially-constructed networks of
relatively conventional processors rather than unique processors.

Given a blank slate, it’s clear that one could design a vastly more AGI-
appropriate hardware platform than the von Neumann architecture. Concep-
tually speaking, we believe the Connection Machine was on the right track.
However, modern networking technology and distributed software architec-
ture have brought the von Neumann architecture a long way from its roots,
and we believe that it is possible to use contemporary technology to create
distributed AI platforms of significant power and elegance.

Fig. 1 depicts the DINI (Distributed INtegrative Intelligence) architecture,
a generic distributed-processing-based framework for AGI-based data analy-
sis/querying/management, designed by the authors as a platform for large-
scale Novamente deployment. The mathematical structures and dynamics of
Novamente could be implemented in many ways besides DINI; and DINI could
be used as a platform for many software systems different from Novamente.
But, Novamente and DINI are a natural fit.

The key components of DINI, as shown in Fig. 1, are:

e “Analytic clusters” of machines — each cluster carrying out cognitive anal-
ysis of data, and creating new data accordingly

e Massive-scale data haven integrating multiple DBs and providing a unified
searchable interface

e “Fisher” process, extracting appropriate data from the data bank into the
Analytic Clusters

e “Miner” processes, extracting information from external databases into
the data bank
Web spiders continually gathering new information
“Mediator” process merging results from multiple analytic clusters into
the data bank
Interfaces for knowledge entry by human beings
Interfaces for simple and advanced querying
J2EE middleware for inter-process communication, scalability, transaction
control, load balancing, overall adaptive system control

The subtlest processes here are the Fisher and the Mediator.
The Fisher may respond to specific queries for information submitted by
the analytic clusters. But it also needs to be able to act autonomously — to
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Fig. 1: The DINI architecture

use heuristics to guess what data may be interesting to the analytic clusters,
based on similarity to the highest-priority data in the analytic clusters.

The Mediator exists due to the fact that diverse analytic clusters, acting
on the same data and thinking about the same problems, may produce con-
tradictory or complementary conclusions. Reconciliation of these conclusions
into a single view in the centralized DB is required. When reconciliation is
implausible, multiple views are stored in the centralized DB. Reconciliation is
carried via a logical process of “belief revision,” using formulas derived from
Novamente’s first-order inference component.

2.2 Database Integration and Knowledge Integration

A large role is played in the DINI architecture by the “data bank” component.
Much of the information in a DINT data bank will be created by AGI processes
themselves. However, there will also, generally speaking, be a large amount of
data from other sources. There is a massive number of databases out there,
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created by various organizations in academia, industry and government® —
these are useful to an AGI in carrying out practical knowledge management,
querying and analysis functions, and also in building up its intelligence and
its understanding of the world.

However, the information in databases is rarely in a format that can be fed
directly into an AGI that is still at the learning phase. Ultimately, a mature
AGI should be able to digest a database raw, figuring out the semantics of
the schema structure on its own. At the present stage, however, databases
require significant preprocessing in order to be useful for AGI systems. This is
a variant of the “database integration” problem: how to take the information
in multiple databases and make it available in a unified way.

Through surveying the approaches to database integration taken in differ-
ent domains, we have come to distinguish four different general strategies:

Federation create a common GUI for separate DB’s

Amalgamation create formal mappings between the schema of different
DB’s

Schema translation create a new RDB combining information from multi-
ple DB’s

Knowledge integration create a translator mapping DB contents into a
“universal formal knowledge representation.”

Applying AGI systems to database information requires the most robust
approach: knowledge integration. In this approach, knowledge is extracted
from databases into a schema-independent formal language. An example of
this is Cycorp’s approach to knowledge integration, which involves the con-
version of knowledge into their CycL language [18]. However, for technical
reasons we feel that the CycL approach is not sufficiently flexible to support
non-formal-logic-centric Al approaches.

One practical, and extremely flexible, form that knowledge integration
may take involves the XML language. We have created a special XML DTD
for Novamente, which consists of a set of tags corresponding to Novamente’s
internal knowledge representation. To integrate a database into Novamente,
the primary step required is to write code that exports the relational data ta-
bles involved into XML structured by the Novamente DTD. However, for best
results, a significant “amalgamation” process must be carried out beforehand,
to be sure that different overlapping databases are exported into Novamente
structures in a fully semantically compatible way. The same software frame-
work could be used to support Al approaches different from Novamente; one
would merely have to create appropriate XML transformation schemata to
translate a Novamente DTD into a DTD appropriate for the other Al system.

1Of course, the robotics and DB oriented approaches are not contradictory; they
could both be pursued simultaneously. Here however we are focusing on the DB
option, which is our focus at present and in the near future.
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3 What Is Artificial General Intelligence?

To understand why and how we pursue the holy grail of AGI, it’s necessary
to understand what AGI is, and how it’s different from what the bulk of re-
searchers in the Al field have come to refer to as “intelligence.” If narrow Al
did not exist, we wouldn’t need the term “general intelligence” at all — we’d
simply use the term “intelligence.” When we speak of human intelligence,
after all, we implicitly mean general intelligence. The notion of IQ arose in
psychology as an attempt to capture a “general intelligence” factor or g-factor
[14], abstracting away from ability in specific disciplines. Narrow AI, however,
has subtly modified the meaning of “intelligence” in a computing context, to
mean, basically, the ability to carry out any particular task that is typically
considered to require significant intelligence in humans (chess, medical diag-
nosis, calculus, ...). For this reason we have introduced the explicit notion
of Artificial General Intelligence, to refer to something roughly analogous to
what the g-factor is supposed to measure in humans.

When one distinguishes narrow intelligence from general intelligence, the
history of the AI field takes on a striking pattern. AI began in the mid-
twentieth century with dreams of artificial general intelligence — of creating
programs with the ability to generalize their knowledge across different do-
mains, to reflect on themselves and others, to create fundamental innovations
and insights. But by the early 1970’s, AGI had not come to anything near
fruition, and researchers and commentators became frustrated. AGI faded
into the background, except for a handful of research projects. In time AGI
acquired a markedly bad reputation, and any talk of AGI came to be treated
with extreme skepticism.

Today, however, things are a good bit different than in the early 1970s
when AGI lost its lustre. Modern computer networks are incomparably more
powerful than the best supercomputers of the early 1970s, and software in-
frastructure has also advanced considerably. The supporting technologies for
AGI are in place now, to a much greater extent than at the time of the early
failures of the AGI dream. And tremendously more is now known about the
mathematics of cognition, partly due to work on narrow Al, but also due to
revolutionary advances in neuroscience and cognitive psychology. We believe
the time is ripe to overcome the accumulated skepticism about AGI and make
a serious thrust in the AGI direction. The implication is clear: the same ad-
vances in computer technology that have given us the current information glut
enable the AGI technology that will allow us to manage the glut effectively,
and thus turn it into an advantage rather than a frustration.

We find it very meaningful to compare AGI to the currently popular field
of nanotechnology. Like nanotechnology, we believe, AGI is “merely an en-
gineering problem,” though certainly a very difficult one. Brain science and
theoretical computer science clearly suggest that AGI is possible if one arrives
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at the right design?. The Novamente project is not the only existing effort to
use the “right design” to create a true AGI, but it is one of a handful of such
efforts, and we believe it is more advanced than any other.

Because of the confusing history of AI, before launching into the details
of the Novamente AGI design, we feel it is worthwhile to spend a few para-
graphs clarifying our notion of general intelligence. The reader is asked to bear
in mind that “intelligence” is an informal human language concept rather than
a rigorously defined scientific concept; its meaning is complex, ambiguous and
multifaceted. In order to create useful AGI applications, however, we require
a practical working definition of the AGI goal — not a comprehensive under-
standing of all the dimensions of the natural language concept of intelligence.

3.1 What Is General Intelligence?

One well-known characterization of artificial general intelligence is Alan Tur-
ing’s famous “Turing Test” — “write a computer program that can simulate
a human in a text-based conversational interchange” [67]. This test serves
to make the theoretical point that intelligence is defined by behavior rather
than by mystical qualities, so that if a program could act like a human, it
should be considered as intelligent as a human®. However, Turing’s test is not
useful as a guide for practical AGI development. Our goal is not to create a
simulated human, but rather to create a nonhuman digital intelligent system
— one that will complement human intelligence by carrying out data analysis
and management tasks far beyond the capability of the human mind; and one
that will cooperate with humans in a way that brings out the best aspects of
both the human and the digital flavors of general intelligence.

Similarly, one might think that human IQ tests — designed to assess hu-
man general intelligence — could be of some value for assessing the general
intelligence of software programs. But on closer inspection this turns out to
be a dubious proposition as. Human 1Q tests work fairly well within a sin-
gle culture, and much worse across cultures [54] — how much worse will they
work across different types of AGI programs, which may well be as different
as different species of animals?

In [27], a simple working definition of intelligence was given, building on
various ideas from psychology and engineering. The mathematical formal-
ization of the definition requires more notation and machinery than we can
introduce here, but verbally, the gist is as follows:

General Intelligence is the ability to achieve complex goals in complex
environments.

2Though a small minority of scientists disagree with this, suggesting that there
is somethign noncomputational going on in the brain. See [36, 57]

3 Although Searle’s Chinese Room argument attempts to refute this claim, see
[59]
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The Novamente Al Engine work has also been motivated by a closely
related vision of intelligence provided by Pei Wang in his PhD thesis and
related works ([69], also this volume.) Wang’s definition posits that general
intelligence is

“[T]he ability for an information processing system to adapt to its
environment with insufficient knowledge and resources.”

The Wang and Goertzel definitions are complementary. In practice, an
AGI system must be able to achieve complex goals in complex environments
with insufficient knowledge and resources. Al researcher Shane Legg has sug-
gested? that this notion of intelligence should be labeled “cybernance” to
avoid entanglement with the ambiguities of the informal language notion of
“intelligence.”

A primary aspect of the “complex goals in complex environments” defini-
tion is the plurality of the words “goals” and “environments.” A single com-
plex goal is not enough, and a single narrow environment is not enough. A
chess-playing program is not a general intelligence, nor is a datamining engine
that does nothing but seek for patterns in consumer information databases,
and nor is a program that can extremely cleverly manipulate the multiple
facets of a researcher-constructed microworld (unless the microworld is vastly
more rich and diverse one than any yet constructed). A general intelligence
must be able to carry out a variety of different tasks in a variety of different
contexts, generalizing knowledge from one context to another, and building
up a context and task independent pragmatic understanding of itself and the
world.

One may also probe one level deeper than these definitions, delving into
the subtlety of the relationship between generalized and specialized intelli-
gence. Drawing on ideas from the formal theory of complexity (see [29]; for
related, more rigorously developed ideas, see [42]), one may define a system as
fully generally intelligent for complexity N if it can achieve any goal of com-
plexity N in any environment of complexity N. And this is where things get
interesting, because it’s clear that full general intelligence is only one aspect
of human general intelligence.

The way the human brain seems to work is:

e some of its architecture is oriented towards achieving full general intelli-
gence for small N (i.e. humans can solve any reasonably simple; problem)
e some of its architecture is oriented towards increasing problem-solving
ability for goals and environments with complexity N so large that the
human brain’s full general intelligence for complexity N is effectively zero.

For example, human visual cognition is specialized to deal with environ-
ments of great complexity, and the human brain is certainly not able to deal
equally well with all phenomena of comparable complexity. The human brain is

4Personal communication
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specialized for visual cognition, even though it brings its “general intelligence
capability” to bear on the problem in many ways. The same phenomenon
exists in many other areas, from human social cognition [15] to mathemat-
ical problem-solving (humans are not good at proving randomly generated
mathematical theorems).

Any real-world-useful general intelligence will, like the human brain, dis-
play a mix of “full general intelligence” methods focused on boosting full gen-
eral intelligence for small N, and “general intelligence leveraging specialized
intelligence methods” (GILSIM) that are different from narrow-Al methods
in that they specifically leverage a combination of specialized heuristics and
small-N full-general-intelligence methods.

As it turns out, the hard part of the practical general intelligence problem
is not the small-N full-general-intelligence part, but rather the GILSIM part.
Achieving “small-N general intelligence” is a mathematics problem, solvable
via algorithms such as genetic programming [49], reinforcement learning [66],
or Schmidhuber’s OOPS algorithm [58]. Novamente uses a combination of
several approaches here, as will be briefly discussed below.

On the other hand, contemporary mathematics has less to offer when it
comes to the task of building a system capable of supporting multiple specialized
intelligences that combine task-appropriate heuristics with limited-complexity
full general intelligence. And this is the central challenge of AGI design as we
see it. It is the challenge the Novamente design addresses.

3.2 The Integrative Approach to AGI

At least three basic approaches to AGI are possible:

1. close emulation of the human brain in software;

2. conception of a novel AGI architecture, highly distinct from the brain and
also from narrow Al programs;

3. an integrative approach, synthesizing narrow AI algorithms and struc-
tures in a unique overall framework, perhaps guided to some extent by
understanding of the human brain.

The Novamente approach lies falls on the continuum between approach 2
and approach 3. Roughly 2/3 of the Novamente design is based on existing
narrow Al approaches, and the rest was conceived de novo with AGI in mind.

Novamente emphatically does not fall into Category 1: it is not a human-
brain emulation. While the human brain was a conceptual inspiration for No-
vamente, particularly in the early design phase, the Novamente design makes
a concerted effort to do things in ways that are efficient for software running
on networks of von Neumann machines, and this is often profoundly different
from the ways that are efficient on neural wetware. Further along this chap-
ter, Table 9 reviews some of the parallels between human brain structures and
processes and Novamente structures and processes.
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The integrative approach is based on the idea that many narrow Al ap-
proaches embody good ideas about how some particular aspect of intelligence
may be implemented computationally. For instance, logic-based Al contains
many insights as to the nature of logical reasoning. Formal neural networks
embody many insights about memory, perception, classification, and reinforce-
ment learning of procedures. Evolutionary programming is an excellent tech-
nique for procedure learning, and for the creation of complex new concepts.
Clustering algorithms are good ways of creating speculative new categories
in a poorly-understood domain. Et cetera. The observation that narrow Al
approaches often model particular aspects of intelligence well leads to the idea
of synthesizing several narrow Al approaches to form an AGI architecture.
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This kind of synthesis could be conducted in two ways:

Loose integration, in which different narrow Al techniques reside in sepa-
rate software processes or software modules, and exchange the results of
their analysis with each other;

Tight integration, in which multiple narrow AI processes interact in real-
time on the same evolving integrative data store, and dynamically affect
one another’s parameters and control schemata.

The manifestation of these two types of integration in a DINI context is
shown in Figures 2 and 3. The “loose integration” approach manifests itself
in DINT as an architecture in which separate analytical clusters, embodying
separate narrow Al techniques, interact via the central data warehouse. The
“tight integration” approach manifests itself in terms of a complex analytical
cluster containing its own local DB, involving multiple narrow AI algorithms
inextricably interlinked.

Tight integration is more difficult to design, implement, test and tune,
but provides the opportunity for greater intelligence via emergent, cooperative
effects. Novamente is based on tight integration, and we believe that this is the
only approach that is viable for genuine AGI. Novamente essentially consists
of a framework for tightly integrating various Al algorithms in the context of
a highly flexible common knowledge representation, and a specific assemblage
of AT algorithms created or tweaked for tight integration in an integrative AGI
context.

3.3 Experiential Interactive Learning and Adaptive
Self-modification

We have been discussing AGI as a matter of complex software systems em-
bodying complex mathematical Al algorithms. This is an important perspec-
tive, but it must be remembered that AGI is not simply another form of engi-
neering — it is also a deeply philosophical and conceptual pursuit. Novamente
was not designed based on engineering and mathematical considerations alone.
Rather, it owes its ultimate origin to an abstract, complex-systems-theoretic
psychological /philosophical theory of mind — the “psynet model,” which was
presented by the first author in five research monographs published between
1993 and 2001 [27, 26, 28, 29, 30].

Based on the premise that a mind is the set of patterns in a brain, the
psynet model describes a specific set of high-level structures and dynamics
for mind-patterns, and proposes that these are essential to any sort of mind,
human or digital. These are not structures that can be programmed into
a system; rather they are structures that must emerge through the situated
evolution of a system — through experiential interactive learning. Novamente’s
specific structures and dynamics tie in closely with the more general ones
posited by the psynet model.
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The psynet model also contains a theory of the relation between learning
and mind that is different from the most common perspectives expressed in
the AT literature. Namely, it posits that:

Software and mathematics alone, no matter how advanced, cannot cre-
ate an AGI.

What we do believe software and mathematics can do, however, is to set
up a framework within which artificial general intelligence can emerge through
interaction with humans in the context of a rich stream of real-world data.
That is:

Intelligence most naturally emerges through situated and social expe-
rience.

It is clear that human intelligence does not emerge solely through human
neural wetware. A human infant is not so intelligent, and an infant raised
without proper socialization will never achieve full human intelligence [22].
Human brains learn to think through being taught, and through diverse social
interactions. We suggest the situation will be somewhat similar with AGI’s.
The basic AGI algorithms in Novamente are not quite adequate for practical
general intelligence, because they give only the “raw materials” of thought.
What is missing in a Novamente “out of the box” are context-specific control
mechanisms for the diverse cognitive mechanisms. The system has the capa-
bility to learn these, but just as critically, it has the capability to learn how to
learn these, through social interaction. A Novamente “out of the box” will be
much smarter than narrow Al systems, but not nearly as robustly intelligent
as a Novamente that has refined its ability to learn context-specific control
mechanisms through meaningful interactions with other minds. For instance,
once it’s been interacting in the world for a while, it will gain a sense of how
to reason about conversations, how to reason about network intrusion data,
how to reason about bioinformatics data — by learning context-dependent in-
ference control schemata for each case, according to a schema learning process
tuned through experiential interaction.

These considerations lead us straight to the concepts of autonomy, experi-
ential interactive learning, and goal-oriented self-modification — concepts that
lie right at the heart of the notion of Artificial General Intelligence. In order
for a software system to demonstrate AGI, we believe, it must demonstrate:

e a coherent autonomy as an independent, self-perceiving, self-controlling
systemn;

e the ability to modify and improve itself based on its own observations and
analyses of its own performance;

e the ability to richly interact with, and learn from, other minds (such as
human minds).
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These general points evoke some very concrete issues, to do with the differ-
ence between conventional data analysis and knowledge management systems,
and AGI systems applied to data analysis, management and querying.

A tightly-coupled, integrative Al software system may be supplied with
specific, purpose-oriented control schemata and in this way used as a datamin-
ing and/or query processing engine. This is the approach taken, for example,
in the current applications of the Novamente engine in the bioinformatics do-
main. But this kind of deployment of the Novamente software does not permit
it to develop anywhere near its maximum level of general intelligence.

For truly significant AGI to emerge, a software system must be deployed
somewhat differently. It must be supplied with general goals, and then allowed
to learn its own control schemata via execution of its procedure learning dy-
namics in the context of interaction with a richly structured environment,
and in the context of extensive meaningful interactions with other minds.
This path is more difficult than the “hard-wired control schemata” route, but
it is necessary for the achievement of genuine AGI.

The Novamente system, once fully engineered and tuned, will gain its
intelligence through processing practically-relevant data, answering humans’
questions about this data, and providing humans with reports summarizing
patterns it has observed. In addition to EIL through interactive data analy-
sis/management, we have created a special “EIL user interface” called Shape-
World, which involves interacting with Novamente in the context of a simple
drawing panel on which the human teacher and Novamente may draw shapes
and talk about what they're doing and what they see. We have also designed
an environment called EDEN (EDucational Environment for Novamente), a
virtual-reality world in which Novamente will control simulated agents that
interact with human-controlled agents in a simulated environment.

This process of “experiential interactive learning” has been one of the pri-
mary considerations in Novamente design and development. It will continually
modify not only its knowledge base, but its control schemata based on what
it’s learned from its environment and the humans it interacts with.

The ultimate limits of this process of self-improvement are hard to foresee —
if indeed there are any. It is worth remembering that source code itself is a for-
mal object, which may easily be represented in the knowledge-representation-
schema of an AGI system such as Novamente. Inferences about source code
and its potential variations and improvements would appear to lie within the
domain of computationally-achievable probabilistic reasoning. There seems
no basic reason why an AGI system could not study its own source code and
figure out how to make itself smarter. And there is an appealing exponential
logic to this process: the smarter it gets, the better it will be at improving
itself. Of course the realization of this kind of ultimate self-adaptation lies
some distance in the future. There may be significant obstacles, unforeseeable
at the current point. But, on the conceptual level at least, these ideas are a
natural outgrowth of the processes of goal-directed self-improvement that we
will be deploying in Novamente in the near term, as part of the AGI tuning
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and teaching process. The Novamente system has been designed with a clear
focus on fulfilling short-term data analysis, management and querying needs,
but also with an eye towards the full grandeur of the long-term AGI vision.

4 The Psynet Model of Mind

In this section we will delve a little more deeply into the psynet model of mind,
the conceptual and philosophical foundation for the Novamente system.

For starters, we must clarify our use of the term “mind.” Our view is
that “mind,” like “intelligence,” is a human language concept, with a rich
abundance of overlapping meanings. The psynet model does not aim to fully
capture the human-language notion of “mind.” Rather, it aims to capture a
useful subset of that notion, with a view toward guiding AGI engineering and
the analysis of human cognition.

The psynet model is based on what Ray Kurzweil calls a “patternist”
philosophy [50]. It rests on the assumption that a mind is neither a physical
system, nor completely separate from the physical — rather, a mind is some-
thing associated with the set of patterns in a physical system. In the case of an
intelligent computational system, the mind of the system is not in the source
code, but rather in the patterns observable in the dynamic trace that the
system creates over time in RAM and in the registers of computer processors.

The concept of pattern used here is a rigorous one, which may be grounded
mathematically in terms of algorithmic information theory [29, 16]. In essence,
a pattern in an entity is considered as an abstract computer program that is
smaller than the entity, and can rapidly compute the entity. For instance, a
pattern in a picture of the Mandelbrot set, might be a program that could
compute the picture from a formula. Saying “mind is pattern” is thus tanta-
mount to positioning mind in the mathematical domain of abstract, nonphys-
ical computer programs. As cautioned above, we are not asserting this as a
complete explanation of all aspects of the concept of “mind” — but merely as
a pragmatic definition that allows us to draw inferences about the minds of
AGI systems in a useful way.

The “mind is pattern” approach to AI theory is not in itself original;
similar ideas can be found in the thinking of contemporary philosophers such
as Gregory Bateson [9], Douglas Hofstadter [39] and Daniel Dennett [20]. The
psynet model, however, takes the next step and asks how the set of patterns
comprising a mind is structured, and how it evolves over time. It seeks to
understand mind in terms of pattern dynamics, and the emergent structures
arising from pattern dynamics.

According to the psynet model, the patterns constituting a mind function
as semi-autonomous “actors,” which interact with each other in a variety
of ways. Mental functions like perception, action, reasoning and procedure
learning are described in terms of interactions between mind-actors (which
are patterns in some underlying physical substrate, e.g., a brain or a computer
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program). And hypotheses are made regarding the large-scale structure and
dynamics of the network of mind-patterns.

Consistent with the “complex goals in complex environments” character-
ization of intelligence, an intelligent system, at a given interval of time, is
assumed to have a certain goal system (which may be expressed explicitly
and/or implicitly in the system’s mind®). This goal system may alter over
time, either through “goal drift” or through the system’s concerted activity
(some goals may explicitly encourage their own modification). It is important
that an intelligent system has both general and specific goals in its goal sys-
tem. Furthermore, one particular general goal is posited as critical to the goal
system of any intelligent system: the creation and recognition of new patterns.
With this goal in its goal system, an intelligence will seek to perceive and
creation new structures in itself, as it goes about the business of achieving its
other goals; and this self-perception/creation will enhance its intelligence in
the long term.

The pattern dynamics of a cognitive system is understood to be governed
by two main “forces”: spontaneous self-organization and goal-oriented behav-
ior.

More specifically, several primary dynamical principles are posited, includ-
ing:

Association, in which patterns, when given attention, spread some of this
attention to other patterns that they have previously been associated with
in some way.

Differential attention allocation, in which patterns that have been valu-
able for goal achievement are given more attention, and are encouraged
to participate in giving rise to new patterns.

Pattern creation, in which patterns that have been valuable for goal-
achievement are mutated to yield new patterns, and are combined with
each other to yield new patterns.

Relationship reification,] in which habitual patterns in the system that are
found valuable for goal-achievement, are explicitly reinforced and made
more habitual.

For example, it is proposed that, for a system to display significant intel-
ligence, the network of patterns observable in the system must give rise to
several large-scale emergent structures:

Hierarchical network, in which patterns are habitually in relations of con-
trol over other patterns that represent more specialized aspects of them-
selves

Heterarchical network, in which the system retains a memory of which
patterns have previously been associated with each other in any way

SParenthetically, it is important that a goal set be defined over an interval of
time rather than a single point of time; otherwise the definition of “implicit goal
sets” is more difficult.
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Dual network, in which hierarchical and heterarchical structures are com-
bined, the dynamics of the two structures working together harmoniously

“Self” structure, in which a portion of the network of patterns forms into
an approximate (fractal) image of the overall network of patterns.

The psynet model is a very general construct. It does not tell you how
to build an AGI system in the engineering sense; it only tells you, in general
terms, “what an AGI system should be like.” Novamente is the third AGI-
oriented software system created with the psynet model in mind, and it is very
different from the previous two efforts. The differences between these systems
may be summarized as follows:

1994: Antimagicians, which was an experimental psynet-inspired program
in the pure self-organizing-systems vein [29, 68, 46], with very few built-in
structures and an intention for the structures and dynamics of mind to
emerge via experience. The anticipated emergence was not observed, and
it was decided to take a more engineering-oriented approach in which more
initial structures and dynamics are implanted as a “seed” for intelligent
self-organization.

1996-2001: The Webmind AI Engine, “Webmind,” developed at Web-
mind Inc., was a large-scale Java software system that derived its software
design from the psynet model in a very direct way. Portions of Webmind
were successfully applied in the domains of financial prediction and in-
formation retrieval; and a great amount of useful prototyping was done.
But it was found that directly mapping the psynet model’s constructs
into object-oriented software structures leads to serious problems with
computational efficiency.

Since 2001: Novamente, which represents an entirely different approach,
embodying a highly flexible, computationally efficient AGI framework,
which could be used to implement a variety of different AI systems. This
framework includes three main aspects: the DINI architecture, the phi-
losophy of tightly-coupled integrative Al, and the Novamente “Mind OS”
architecture to be described below. Novamente also embodies a particu-
lar choice of software objects within this framework, whose selection is
heavily shaped by the ideas in the psynet model of mind.

The relation between the psynet model of mind and Novamente is some-
what like the relationship between evolutionary theory and contemporary evo-
lutionary programming algorithms. Evolutionary theory provides the concep-
tual underpinnings for evolutionary programming, and the first evolutionary
programming algorithm, the traditional bit string GA [33], arose as a fairly
direct attempts to emulate biological evolution by natural selection [41]. But
contemporary evolutionary programming approaches such as the Bayesian
Optimization Algorithm [56] and Genetic Programming [49] achieve superior
pragmatic functionality by deviating fairly far from the biological model, and
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are only more indirectly mappable back into their conceptual inspiration. Sim-
ilarly, Novamente represents the basic concepts involved in the psynet model,
but in an indirect form that owes equally much to issues of pragmatic func-
tionality in a contemporary computing context.

5 The Novamente AGI Design

The Novamente Al Engine (“Novamente”) is a large-scale, object-oriented,
multithreaded software system, intended to operate within the DINI frame-
work. It is a C++ software system, with a few externally-facing components
written in Java. Currently, development is primarily on the Linux operating
system, but porting to other varieties of Unix or to Windows would not be
problematic®. In DINT terms, a Novamente system is a collection of analytical
clusters, most of them tightly-integrated, some of them more simple and spe-
cialized. It embodies a tightly-coupled integrative approach to AGI, in which a
number of narrow AI approaches are combined with several innovative struc-
tural and dynamical ideas, in the context of a common “universal knowledge
representation.” The structures and processes chosen for Novamente are in-
tended to allow the system to realize the abstract dynamics and emergent
structures described in the psynet model of mind.

In this section we will paint the Novamente design in broad strokes, il-
lustrating each aspect discussed in the context of data analysis, querying or
management. Later on we will delve into a few of the more important Al
processes in the system in slightly more detail. The AGIRI website contains
a periodically updated page which gives yet more depth to the portrayal,
systematically enumerating some of the key structures and dynamics of the
system.

Below we briefly describe the major aspects of Novamente design:

Nodes. Nodes may symbolize entities in the external world, they may em-
body simple executable processes, they may symbolize abstract concepts,
or they may serve as components in relationship-webs signifying complex
concepts or procedures.

Links. Links may be n-ary, and may point to nodes or links; they embody
various types of relationships between concepts, percepts or actions. The
network of links is a web of relationships.

MindAgents. A MindAgent is a software object embodying a dynamical
process such as importance updating, concept creation, or first-order log-
ical inference. It acts directly on individual Atoms, but is intended to
induce and guide system-wide dynamical patterns.

SIn fact the system has been tested on FreeBSD, and a partial Windows port
exists.
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Mind OS. The Mind OS, living within the DINI framework, enables diverse
MindAgents to act efficiently on large populations of Nodes and Links
distributed across multiple machines.

Maps. A map represents declarative or procedural knowledge, as a pattern
distributed across many Nodes and Links.

Units. A Unit is a collection of Nodes, Links and MindAgents, living on
a cluster of machines, collectively devoted to carrying out a particular
function such as: vision processing, language generation, highly-focused
concentration, ...

5.1 An Integrative Knowledge Representation

Knowledge representation is one of the huge, classic Al problems. Of course,
it is intimately bound up with the problem of cognitive algorithms — different
cognitive algorithms have different requirements for knowledge representation,
and different knowledge representations suggest different cognitive algorithms.
Novamente’s knowledge representation arose out of a search for the simplest,
most conveniently manipulable knowledge representation that was easily com-
patible with all the different AI processes in the Novamente system. Like the
Novamente system itself, Novamente’s knowledge representation is a synthe-
sis of ideas from existing narrow Al paradigms — with a significant number of
original elements added in as well, to fill roles not addressed by existing ideas
(including some roles, like system-wide attention allocation, that intrinsically
could not be filled by narrow AI approaches).
Knowledge is represented in Novamente on two levels:

Atoms, software objects that come in two species: Nodes or Links.

Maps, sets of Atoms that tend to be activated together, or tend to be ac-
tivated according to a certain pattern (e.g. an oscillation, or a strange
attractor.)

Generally speaking the same types of knowledge are represented on the
Atom level and on the map level. Atom level representation is more precise
and more reliable, but map level representation is more amenable to certain
types of learning, and certain types of real-time behavior.

Figure 5 gives a graphical example of a map — the map for the concept of
“New York” as it might occur in a Novamente system. This map is a fuzzy
node set containing the ConceptNode corresponding to the New York concept,
and also a host of other related nodes.

On the Atom level, the essential mathematical structure of Novamente’s
knowledge representation is that of a hypergraph (a graph whose edges can
span k > 2 nodes [13]). We call this hypergraph an Atomspace, meaning that
it is a hypergraph with the special properties that:

e the nodes and links are weighted with complex weight structures (Truth-
Value and AttentionValue objects);
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Fig. 4: A Novamente instance as a distributed system (each Novamente Unit is a
DINT Analytical Cluster)

the nodes and links are labeled with different “type” labels;
some of the nodes can contain data objects (characters, numbers, color
values, etc);

e some of the nodes can contain small hypergraphs internally.

Conceptually, the two weight structures associated with Novamente Atoms
involved represent the two primary schools of Al research — logic (TruthValue)
and neural networks (AttentionValue).
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Fig. 5: Example of a Novamente map

The TruthValue indicates, roughly, the degree to which an Atom correctly

describes the world. The object contains:

a probability value;

a “weight of evidence” value indicating the amount of evidence used to
derive the probability;

optionally further information such as a probability distribution function;
optionally special information about the probability of an Atom in a given
perception/action stream.

The AttentionValue is a bundle of information telling how much attention

of various kinds an Atom should get and is getting. This includes:

Long-Term-Importance (LTI), an estimate of the value of keeping the
Atom in memory instead of paging it to disk;

Recent Utility, a measure of how much value has been obtained from pro-
cessing the Atom recently;

Importance, a measure of how much CPU time the Atom should get, which
is based on activation, LTI, and recent utility.

This special Atomspace hypergraph is used in many different ways. For

instance:
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1. all nodes and links are intended to be interpreted logically, using proba-
bilistic logic;

2. some nodes and links can be seen to reflect processes of causation, and are
used for ”assignment of credit” which is a key part of adaptive attention
allocation;

3. some nodes and links can be interpreted as executable programs.

Enabling all these interpretations simultaneously requires some care.

@ == O v @ o
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Fig. 6: Predicate expressions represented as nodes and links

What about the map level of knowledge representation? Because maps are
implicitly rather than explicitly encoded in the system, there is less that can
be said about them in a compact way. But one key point is that the network
of maps in the system is also conceivable as a hypergraph — one whose nodes
are fuzzy sets of Atoms. Map-level links are defined in the natural way: the
map-level link of a certain type T, between map A and map B, is defined
as the bundle of links of type T' going between Atoms in A and Atoms in B
that are simultaneously active. Map-level links are defined implicitly by Atom-
level links. They represent a more general, diffuse kind of knowledge, which
interacts with Atom-level knowledge via a complex set of feedback effects.

In the language of the psynet model, maps are patterns, the “mind-stuff”
corresponding to the “brain-stuff” that is the Novamente software code and its
dynamic image in RAM. Atoms (nodes and links) exist on an interesting inter-
mediate level that we call “concretely-implemented mind.” That is, Atoms are
not mind-stuff, but they are parts of brain-stuff that that are “mind-indexers,”
in the sense that many Atoms are associated with specific patterns in the sys-
tem (specific instances of mind-stuff), and the rest are directly included as
components in many patterns in the system.
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The relation between Novamente structures and human brain structures
is interesting but indirect, and will be reviewed in Section 5.8 below. In brief,
there is no Novamente correlate of neurons and synapses — Novamente does
not emulate the brain on such a low level. However, there is a rough intuitive
mapping between Novamente nodes and what neuroscientist Gerald Edelman
calls “neuronal groups” [23] — tightly connected clusters of 10,000-50,000 neu-
rons. Novamente links are like bundles of synapses joining neuronal groups.
And Novamente maps are something like Edelman’s “neural maps.”

Viewed against the background of contemporary narrow Al theory, the No-
vamente knowledge representation is not all that unusual. It combines aspects
of semantic network, attractor neural network, and genetic programming style
knowledge representation. But it does not combine these aspects in a “multi-
modular” way that keeps them separate but interacting: it fuses them together
into a novel representation scheme that is significantly more than the sum of
its parts, because of the specific way it allows the cooperative action of a
variety of qualitatively very different, complementary cognitive processes.

5.2 The Mind OS

The central design concept of Novamente is to implement multiple cognitive
algorithms in a tightly-integrated way, using the hypergraph knowledge rep-
resentation described just above, in the practical context of the DINI software
architecture.

The crux of Novamente design from an Al perspective lies in the choice of
cognitive algorithms and their manner of tight integration. Before we get there,
however, there is one missing link to be filled in — the computational mechanics
of actually managing a collection of tightly integrated AI processes. This is
handled by a software component that we call the Mind OS, “Novamente
core,” or simply “the core.”

As the “OS” moniker suggests, the Mind OS carries out many of the func-
tions of an operating system. In fact it may be considered as a generic C++
server-side framework for multi-agent systems, optimized for complex and in-
tensive tasks involving massive agent cooperation. While it is customized for
Novamente Al, like DINT it is broadly extensible and could be used for many
other purposes as well.

The Mind OS is itself a distributed processing framework, designed to live
within the larger distributed processing framework of the DINI architecture”.
It is designed to operate across a cluster of tightly-coupled machines, in such a
way that a node living on one machine in the cluster may have links relating
it to nodes living on other machines in the cluster. In DINI, the Mind OS
is intended to live inside a complex analytic cluster. A complex Novamente
configuration will involve multiple functionally-specialized analytic clusters,
each one running the Mind OS.

"The current version of the Mind OS is restricted to a single SMP machine, but
has been constructed with easy extension to distributed processing in mind.
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On each machine in a Mind OS-controlled cluster, there is a table of Atoms
(an AtomTable object, which comes with a collection of specialized indices for
rapid lookup), and then a circular queue of objects called MindAgents. The
MindAgents are cycled through, and when one gets its turn to act, it acts for a
brief period and then cedes the CPU to the next MindAgent in the queue. Most
of the MindAgents embody cognitive processes, but some embody “system-
level” processes, like periodically caching the AtomTable to disk, polling for
external input (such as input from a UI), or gathering system statistics. On an
SMP machine, the Mind OS may allocate different MindAgents to the different
processors concurrently, obeying a fixed table of exclusion relationships in
doing so.

The distinction between MindAgents and psynet-model “mind actors” may
be confusing here. This distinction reflects the subtlety of the system design,
according to which the abstract mathematical structure of the system is differ-
ent from the implementation structure. The software agents (MindAgents) are
not the “mind actors” of the psynet model; rather, they are dynamic objects
designed to elicit the emergence of the mind actors of the psynet model (the
emergent maps). This separation between implementation agents and emer-
gent agents is a compromise necessary to achieve acceptable computational
efficiency.

Currently, communication with a Mind OS can be done either through
a customized Unix shell called nmshell, which is appropriate for interactive
communication, submission of control commands and debugging); through
XML, using the Novamente DTD; or through a Java/J2EE middleware layer.

A third communication medium, via a Novamente-specific functional-
logical programming language called Sasha, has been designed but not im-
plemented. There is also a Novamente knowledge encoding language called
NQL (Novamente Query Language), a modification of the KNOW language
used with the Webmind system; but this interacts with the core indirectly via
nmshell or XML.

In sum, the Novamente core is a C++ multi-agent system “OS” that sup-
ports:

Multi-threading

Flexible plugging and scheduling of heterogeneous agents

Distributed knowledge with local proxies and caches

Transaction control

Communication with external software agents through XML and scripts
Task and query processing through ticketing system

Adaptive parameter control

Dynamic, adaptive load balancing

In designing and implementing the core, great care has been taken to en-
sure computational time and space efficiency. We learned a lot in this regard
from the flaws of the Webmind Al Engine, a distributed Al architecture de-
signed in the late 1990s by a team overlapping with the current Novamente
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Fig. 7: Conceptual architecture of the Novamente “Mind OS” layer

team. The Webmind architecture was based on a fairly direct mapping of the
psynet model into object-oriented software structures. It was a massive multi-
agent system [70], using a hypergraph knowledge representation in which each
node was implemented as an autonomous software agent. These node-agents
carried out many of the same Al processes embodied in Novamente. How-
ever, the massive multi-agent system architecture proved difficult to tune and
optimize. A moderately-sized distributed Webmind instance had millions of
autonomous software agents in it (nodes, mainly); whereas by contrast, a
moderately sized distributed Novamente instance will have merely hundreds
(MindAgents).

Novamente is still a multi-agent system, but with a different architecture —
and this architectural change makes a huge difference in the sorts of efficiency
optimizations one can implement, resulting in an improvement of three orders
of magnitude in speed and two orders of magnitude in memory use. We are
extremely pleased that the Novamente Mind OS, in spite of its complexity, is
efficient and robust enough to be used at the core of Biomind LLC’s Hproduct
line. At this stage, after many years of experimenting with this sort of soft-
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ware system, we are at the relatively happy point where the “Mind OS” level
practical problems are all solved, and we can focus on the really hard part,
fine-tuning the tight dynamical integration of the cognitive Mind Agents.

5.3 Atom Types

Now we turn to a review of the specific types of nodes and links utilized in
Novamente. As with the choice of MindAgents, this assemblage of node and
link types has been chosen partly on pragmatic grounds, and partly on theo-
retical grounds. We have chosen data structures and dynamics based mainly
on the following criteria:

demonstrated power in narrow Al applications;

mutual coherence as an integrative AGI framework;

propensity for embodying the dynamics and structures posited by the
Psynet Model of Mind.

Novamente contains a couple dozen node and link types, and a nearly-
complete list is given in the AGIRI website. However, there is a layer of
conceptual abstraction between the concept of “nodes and links” and the spe-
cific node and link types. We call this layer “node and link varieties” — each
variety denotes a conceptual function rather than a mathematical or imple-
mentational category; and each variety may contain many different specific
types. Tables 4 and 5 describe the node and link varieties currently used in
Novamente.

Node Variety Description

Perceptual Nodes These correspond to particular perceived items, like
WordInstanceNode, CharacterInstanceNode, Num-
berInstanceNode, PixellnstanceNode

Procedure Nodes These contain small programs called “schema,” and
are called SchemaNodes. Action nodes that carry
out logical evaluations are called PredicateNodes.
ProcedureNodes are used to represent complex pat-
terns or procedures.

ConceptNodes These represent categories of perceptual or action or
conceptual nodes, or portions of maps representing
such categories.

Psyche Nodes These are GoalNodes and FeelingNodes (special
kinds of PredicateNodes), which play a special role
in overall system control, in terms of monitoring sys-
tem health, and orienting overall system behavior.

Table 4: Novamente node varieties
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Link Variety Description

Logical Links These represent symmetric or asymmetric logical re-
lationships among nodes (InheritanceLink, Similar-
ityLink) or among links and PredicateNodes (e.g.
ImplicationLink, EquivalenceLink)

MemberLink These denote fuzzy set membership

Associative Links These denote generic relatedness, including Heb-
bianLink learned via Hebbian learning, and a simple
AssociativeLink representing relationships derived
from natural language or from databases.

Action-Concept Links Called ExecutionLinks and EvaluationLinks, these
form a conceptual record of the actions taken by
SchemaNodes or PredicateNodes

ListLink and These represent internally-created or externally-

ConcatListLink observed lists, respectively.

Table 5: Novamente link varieties

A thorough treatment not being practical here due to space considerations,
we will give only a few brief comments on the semantics of these Novamente
Atom types.

The workhorse of the system is the ConceptNode. Some of these will repre-
sent individual concepts, others will form parts of larger concept maps. Logical
and associative links interrelate ConceptNodes. For example, we may write:

InheritancelLink New York megalopolis

meaning the there are ConceptNodes corresponding to the concepts “New
York” and “nation”, and there is an InheritanceLink pointing from one to the
other (signifying that New York is indeed a megalopolis). Or we may write:

AssociativelLink New York immigration

which just indicates a generic association between the two denoted ConceptN-
odes. An associative relationship is useful for the spreading of attention be-
tween related concepts, and also useful as a signpost telling the logical infer-
ence MindAgents where to look for possibly interesting relationships.

A more concrete relationship between New York and immigration, such as
“many immigrants live in New York”, might be represented as:

ImplicationLink lives_in_New_York is_immigrant

where lives in New York and is immigrant are PredicateNodes, and the
former predicate obeys a relationship that would be written:
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Equivalencelink (lives_in_New_York(X)) (lives_in(New_York, X))
in ordinary predicate logic, and is written more like:
EquivalencelLink lives_in_New_York (lives_in (New_York))

in Novamente’s variable-free internal representation. Variable management is
one of the most complex aspects of logic-based Al systems and conventional
programming languages as well; Novamente bypasses the whole topic, by using
a variable-free representation of predicates and schemata, based on combina-
tory logic.

SchemaNodes and PredicateNodes come in two forms: simple and complex.
Each simple one contains a single elementary schema or predicate function;
each complex one contains an internal directed-acyclic-graph of interlinked
SchemaNodes and PredicateNodes.

The set of elementary schema/predicate functions is in effect an “inter-
nal Novamente programming language,” which bears some resemblance to
functional programming languages like pure LISP or Haskell. The “actions”
carried out by SchemalnstanceNodes are not just external actions, they are
also in some cases internal cognitive actions. Complex SchemaNodes represent
complex coordinated actions that are “encapsulated” in a single node; com-
plex PredicateNodes represent complex patterns observed in the system or the
world outside, and found to be useful. ExecutionLinks and EvaluationLinks
record information about what the inputs and outputs of SchemalnstanceN-
odes and PredicatelnstanceNodes were when they executed.

Ultimately, all the AT processes carried out inside Novamente could be for-
mulated as compound schemata, although in the current core implementation,
this is not the case; the primary Al dynamics of the system are implemented
as C++ objects called MindAgents, which are more efficient than compound
schemata.

Next, FeelingNodes are “internal sensor” nodes, that sense some aspect of
the overall state of the system, such as free memory or the amount the system
has learned lately. Complex “feelings” are formed by combining FeelingNodes
in PredicateNodes, and give the system a “sense of self” in a practical manner
which allows for autonomic homeostasis to be performed and for the system to
deliberately adjust its task orientation towards an increased sense of positive
“feeling.”

Finally, GoalNodes are internal sensors like FeelingNodes, but the con-
dition that they sense may sometimes be less global; they represent narrow
system goals as well as broad holistic ones. The system is supplied with basic
goals as it is with basic feelings, but complex and idiosyncratic goals may
be built up over time. GoalNodes are used in adjusting the system’s auto-
nomic processes to support focus on goal-oriented thought processes, as well
as for the system to deliberately seek out and analyze relevant information to
meeting these goals.
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5.4 Novamente Maps

Many Atoms are significant and valuable in themselves, but some gain mean-
ing only via their coordinated activity involving other Atoms, i.e. their in-
volvement in “maps.” Maps come in many shapes and sizes; a general charac-
terization of Novamente maps would be difficult to come by. However, Table
6 enumerates several roughly defined “map categories” that we feel are useful
for understanding Novamente on the map level, in a general way.

An interesting example of the relation between Atoms and maps in No-
vamente is provided by looking at the implementation of satisfaction in the
system. Novamente has FeelingNodes which are “internal sensors” reporting
aspects of current system state. Some of these are elementary, and some are
combinations of inputs from other FeelingNodes. One important FeelingN-
ode is the Satisfaction FeelingNode, which summarizes those factors that the
system is initially programmed to consider as “desirable.” This is referred to
by the MaximizeSatisfaction GoalNode, which is the center of Novamente’s
motivational system.

On the surface, FeelingNodes look like a symbolic-Al-style representations
of system feelings. However, to pursue a human-mind analogy, these FeelingN-
odes are really more like basic limbic-system or otherwise chemically-induced
brain stimuli than they are like richly textured high-level human feelings. In
the human mind, satisfaction is much more complex than momentary plea-
sure. It involves expectations of satisfaction over various time scales, and it
involves inferences about what may give satisfaction, estimates of how satis-
fied others will be with a given course of action and thus how much pleasure
one will derive from their satisfaction, etc. Biological pleasure is in a sense the
root of human satisfaction, but the relationship is not one of identity. Changes
in the biology of pleasure generally result in changes in the experience of sat-
isfaction — witness the different subjective texture of human satisfaction in
puberty as opposed to childhood, or maturity as opposed to early adulthood.
But the details of these changes are subtle and individually variant.

So, in this example, we have a parallel between an Atom-level entity, the
Pleasure FeelingNode, and an emergent mind map, a meta-Node, the feeling
of system-wide satisfaction or “happiness.” There is a substantial similarity
between these two parallel entities existing on different levels, but not an
identity. Satisfaction is embodied in:

e a large, fuzzily defined collection of nodes and links (a “map”);
e the dynamic patterns in the system that are induces when this collection
becomes highly active (a “map dynamic pattern”).

The Satisfaction FeelingNode is one element of the map associated with
overall system satisfaction or “happiness.” And it is a particularly critical
element of this map, meaning that it has many high-weight connections to
other elements of the map. This means that activation of pleasure is likely —
but not guaranteed — to cause happiness.
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Table 6 describes some map types we find in Novamente. Figure 5 shows
an example of a map.

Map Variety Description
Concept map A map consisting primarily of conceptual nodes
Percept map A map consisting primarily of perceptual nodes,

which arises habitually when the system is pre-
sented with environmental stimuli of a certain sort

Schema map A distributed schema
Predicate map A distributed predicate
Memory map A map consisting largely of nodes denoting specific

entities (hence related via MemberLinks and their
kin to more abstract nodes) and their relationships
Concept-percept map A map consisting primarily of perceptual and con-
ceptual nodes
Concept-schema map A map consisting primarily of conceptual nodes and

SchemaNodes

Percept-concept- A map consisting substantially of perceptual, con-

schema ceptual and SchemaNodes

map

Event map A map containing many links denoting temporal re-
lationships

Feeling map A map containing FeelingNodes as a significant
component

Goal map A map containing GoalNodes as a significant com-
ponent

Table 6: Example Novamente map varieties

5.5 Mind Agents

The crux of Novamente intelligence lies in the MindAgents, which dynamically
update the Atoms in the system on an ongoing basis. Regardless of what
inputs are coming into the system or what demands are placed upon it, the
MindAgents keep on working, analyzing the information in the system and
creating new information based on it.

There are several “system maintenance” MindAgents, dealing with things
like collecting system statistics, caching Atoms to disk periodically, updating
caches related to distributed processing, handling queues of queries from users
and other machines in the same analytic cluster or other Novamente analytic
clusters. We will not discuss these further here, but will restrict ourselves to
the “cognitive MindAgents” that work by modifying the AtomTable.

Tables 7 and 8 briefly mention a few existing and possible MindAgents,
while the AGIRI website gives a complete list of MindAgents, with brief com-
ments on the function of each one on the Atom and map level. Section 7 below
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gives more detailed comments on a few of the MindAgents, to give a rough
flavor for how the system works.

Agent Description

First-Order Inference Acts on first-order logical links, producing new
logical links from old using the formulas of
Probabilistic Term Logic

Logical Link Mining Creates logical links out of nonlogical links

Evolutionary Creates PredicateNodes containing predicates that
Predicate Learning  predict membership in ConceptNodes
Clustering Creates ConceptNodes representing clusters of

existing ConceptNodes (thus enabling the cluster
to be acted on, as a unified whole, by precise
inference methods, as opposed to the less-accurate
map-level dynamics)

Importance Updating Updates Atom “importance” variables and other
related quantities, using specially-deployed
probabilistic inference

Concept Formation  Creates speculative, potentially interesting new

ConceptNodes
Evolutionary A “service” MindAgent, used for schema and
Optimization predicate learning, and overall optimization of

system parameters

Table 7: Existing Novamente Mind Agents

5.6 Map Dynamics

Much of the meaning of Novamente MindAgents lies in the implications they
have for dynamics on the map level. Here the relation between Novamente
maps and the concepts of mathematical dynamical systems theory is highly
pertinent.

The intuitive concept of a map is a simple one: a map is a set of Atoms that
act as a whole. They may act as a whole for purposes of cognition, perception,
or action. And, acting as wholes, they may relate to each other, just like Atoms
may relate to each other. Relationships between maps do not take the form
of individual links; they take the form of bundles of links joining the Atoms
inside one map to the Atoms inside another.

Map dynamics are a bit “slipperier” to talk about than Atom dynamics,
because maps are not explicitly engineered — they emerge. To tell what Atoms
are present in a system at a given time, one simply prints out the AtomTable.
To tell what maps are present, one has to do some advanced pattern recogni-
tion on the Atomspace, to determine which sets of nodes are in fact acting as
coordinated wholes. However, a map doesn’t have to be explicitly identified by
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Agent Description

Higher-Order Carries out inference operations on logical links

Inference that point to links and/or PredicateNodes

Logical Unification  Searches for Atoms that mutually satisfy a pair of
PredicateNodes

Predicate/Schema Creates speculative, potentially interesting new

Formation SchemaNodes

Hebbian Association Builds and modifies links between Atoms, based

Formation on a special deployment of probabilistic inference

that roughly emulates (but greatly exceeds in
exactness) Hebbian reinforcement learning rule

Evolutionary Schema Creates SchemaNodes that fulfill criteria, e.g. that

Learning are expected to satisfy given GoalNodes

Schema Execution Enacts active SchemaNodes, allowing the system
to carry out coordinated trains of action

Map Encapsulation  Scans the AtomTable for patterns and creates new
Atoms embodying these patterns

Map Expansion Takes schemata and predicates embodied in nodes,
and expands them into multiple nodes and links in
the AtomTable (thus transforming complex Atoms
into maps of simple Atoms)

Homeostatic Applies evolutionary programming to adaptively
Parameter tune the parameters of the system
Adaptation

Table 8: Additional, planned Novamente MindAgents

anyone to do its job. Maps exist implicitly in a dynamic Novamente system,
emerging out of Atom-level dynamics and then guiding these dynamics.

In dynamical systems terms, there are two kinds of maps: attractor maps,
and transient maps. Schema and predicate maps are generally transient,
whereas concept and percept maps are generally attractors; but this is not
a hard and fast rule. Other kinds of maps have more intrinsic dynamic va-
riety, for instance there will be some feeling maps associated with transient
dynamics, and others associated with attractor dynamics.

The sense in which the term “attractor” is used here is slightly nonstan-
dard. In dynamical systems theory [21], an attractor usually means a subset
of a system’s state space which is:

Invariant, when the system is in this subset of state space, it doesn’t leave
it;

Attractive, when the system is in a state near this subset of state space, it
will voyage closer and closer to the attracting subspace.

In Novamente, the subset of state space corresponding to a map is the set of
system states in which that map is highly important. However, in Novamente
dynamics, these subsets of state space are almost never truly invariant.
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Many maps are attractive, because Novamente importance updating dy-
namics behaves roughly like an attractor neural network. When most of a map
is highly important, the rest of the map will get lots of activation which will
make it highly important. On the other hand, Atoms linked to map elements
via inhibitory links will get less activation, and become less important.

But maps are not invariant: once a map is active, it is not guaranteed to
remain active forever. Rather, the Importance Updating Function, regulating
Novamente dynamics, guarantees that most of the time, after a map has been
important for a while, it will become less important, because the percentage
of new things learned about it will become less than the percentage of new
things learned about something else.

This combination of attractiveness and temporary invariance that we see
in connection with Novamente maps, has been explored by physicist Mikhail
Zak [74], who has called subsets of state space with this property terminal
attractors. He has created simple mathematical dynamical systems with ter-
minal attractors, by using iteration functions containing mathematical sin-
gularities. He has built some interesting neural net models in this way. The
equations governing Novamente bear little resemblance to Zak’s equations,
but intuitively speaking, they seem to share the property of leading to termi-
nal attractors, in the loose sense of state space subsets that are attractive but
are only invariant for a period of time.

Many concept maps will correspond to fixed point map attractors — mean-
ing that they are sets of Atoms which, once they become important, will tend
to stay important for a while due to mutual reinforcement. On the other hand,
some concept maps may correspond to more complex map dynamic patterns.
And event maps may sometimes manifest a dynamical pattern imitating the
event they represent. This kind of knowledge representation is well-known in
the attractor neural networks literature.

Turning to schemata, an individual SchemaNode does not necessarily rep-
resent an entire schema of any mental significance — it may do so, especially
in the case of a large encapsulated schema; but more often it will be part
of a distributed schema (meaning that SchemaNode might more accurately
be labeled LikelySchemaMapComponentNode). And of course, a distributed
schema gathers its meaning from what it does when it executes. A distributed
schema is a kind of mind map — a map that extends beyond SchemalnstanceN-
ode and SchemaNodes, bringing in other nodes that are habitually activated
when the SchemalnstanceNodes in the map are enacted. Note that this system
behavior may go beyond the actions explicitly embodied in the SchemaNode
contained in the distributed schema. Executing these SchemaNodes in a par-
ticular order may have rampant side-effects throughout the system, and these
side-effects may have been taken into account when the schema was learned,
constituting a key part of the “fitness” of the schema.

Next, percepts — items of data — coming into the system are not necessar-
ily represented by individual perceptual nodes. For instance, a word instance
that has come into the system during the reading process is going to be rep-
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resented in multiple simultaneous ways. There may be a WordInstanceNode,
a ListLink of CharacterInstanceNodes, and so forth. In a vision-endowed sys-
tem, a representation of the image of the word will be stored. These will be
interlinked, and linked to other perceptual and conceptual nodes, and perhaps
to SchemaNodes embodying processes for speaking the word or producing let-
ters involved in the word. In general, percepts are more likely to be embodied
by maps that are centered on individual perceptual nodes (the WordInstan-
ceNode in this case), but this is not going to be necessarily and universally
the case.

Links also have their correlates on the map level, and in many cases are
best considered as seeds that give rise to inter-map relationships. For example,
an InheritanceLink represents a frequency relationship between nodes or links,
but inheritance relationships between maps also exist. An inheritance relation
between two maps A and B will not generally be embodied in a single link, it
will be implicit in a set of InheritanceLinks spanning the Atoms belonging to
A and the Atoms belonging to B. And the same holds for all the other vari-
eties of logical relationship. Furthermore, the first-order inference rules from
Probabilistic Term Logic, Novamente’s reasoning system, carry over naturally
to map-level logical links.

5.7 Functional Specialization

Now we return to the DINT architecture and its specific use within Novamente.
The Novamente MindAgents are designed to be tightly integrated, so that a
large collection of MindAgents acts on a large population of Atoms in an
interleaved way. This set of Atoms may live on one machine, or on a cluster
of connected machines. This kind of tight integration is essential to making
integrative AGI work.

But, according to the Novamente design, there is also another layer re-
quired, a layer of loose integration on top of the tightly integrated layer.
A Novamente system consists of a loosely-integrated collection of “analytic
clusters” or “units,” each one embodying a tightly-connected collection of Al
processes, involving many different Atom types and MindAgents, and dedi-
cated to a particular cognitive processing in a certain particular domain, or
with a specific overall character.

The different analytic clusters interact via DINT; they all draw data from,
and place data in, the same system-wide data warehouse. In some cases they
may also query one another. And the parameters of the MindAgents inside
the various analytic clusters may be adapted and optimized globally.

The simplest multi-cluster Novamente has three units, namely:

1. a primary cognitive unit;

2. a background thinking unit, containing many more nodes with only very
important relationships among them, existing only to supply the primary
cognitive unit with things it judges to be relevant;
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3. an AttentionalFocus unit, containing a small number of atoms and doing
very resource-intensive processing on them.

Here the specialization has to do with the intensity of processing rather
than with the contents of processing.

For a Novamente to interact intensively with the outside world, it should
have two dedicated clusters for each “interaction channel”:

e one to contain the schemata controlling the interaction;
e one to store the “short-term-memory” relating to the interaction.

An “interaction channel” is a collection of sensory organs of some form,
all perceiving roughly the same segment of external reality. Each human has
only one interaction channel. But Novamente does not closely emulate either
the human body or brain, and so it can easily be in this situation, interacting
separately with people in different places around the world.

Perceptual processing like image or sound processing will best be done
in specially dedicated units, with highly modality-tuned parameter values.
Language processing also requires specialized units, dealing specifically with
aspects of language processing such as parsing, semantic mapping, and dis-
ambiguation.

The human brain contains this kind of functional specialization to a large
degree. In fact we know more about the specialization of different parts of the
brain than about how they actually carry out their specialized tasks. Each
specialized module of the brain appears to use a mixture of the same data
representations and learning processes [34]. Many Al systems contain a similar
modular structure, but each module contains a lot of highly rigid, specialized
code inside. The approach here is very different. One begins with a collection
of actors emergently providing generic cognitive capability, and then sculpts
the dynamical patterns of their interactions through functional specialization.

5.8 Novamente and the Human Brain

Having reviewed the key aspects of the Novamente design, we now briefly
return to a topic mentioned earlier, the relationship between Novamente and
the human brain. While Novamente does not attempt to emulate neural struc-
ture or dynamics, there are nevertheless some meaningful parallels. Table 9
elucidates some of the more important ones.

On a structural level, the parallels are reasonably close: Novamente’s
functionally-specialized lobes are roughly analogous to different regions of the
brain. At an intermediate level, Novamente nodes are roughly analogous to
neuronal groups in the brain, as mentioned above; and Novamente links are
like the synapse-bundles interconnecting neuronal groups. Novamente maps
are like Edelman’s neuronal maps, and also in some cases like the neural
attractors posited by theorists like Daniel Amit [4] and Walter Freeman [25].



Human Brain
Structure or
Phenomena
Neurons

Neuronal
groups
Synapses

Synaptic
Modification

Dendritic
Growth

Neural
attractors

Neural
input/output
maps

“Neural
Darwinist” map
evolution
Cerebrum

Specialized
cerebral regions

Cerebellum

Midbrain

Hypothalamus

Limbic System
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Primary Functions

Impulse-conducting cells, whose
electrical activity is a key part
of brain activity

Collections of tightly
interconnected neurons

The junction across which a
nerve impulse passes from one
neuron to another; may be
excitatory or inhibitory
Chemical dynamics that adapt
the conductance of synapses
based on experience; thought to
be the basis of learning

Adaptive growth of new
connections between neurons in
a mature brain

Collections of neurons and/or
neuronal groups that tend to be
simultaneously active
Composites of neuronal groups,
mapping percepts into actions
in a context-appropriate way
Creates new,
context-appropriate maps

Perception, cognition, emotion

Diverse functions such as
language processing, visual
processing, etc.. ..

Movement control, information
integration

Relays and translates
information from all of the
senses, except smell, to higher
levels in the brain

Regulation of basic biological
drives; control of autonormic
functions such as hunger, thirst,
and body temperature
Controls emotion, motivation,
and memory

Table 9: Novamente and the
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Novamente Structure or
Phenomena

No direct correlate

Novamente nodes

Novamente links are like
bundles of synapses joining
neuronal groups

The HebbianLearning
MindAgent is a direct correlate.
Other cognitive MindAgents
(e.g. inference) may correspond
to high-level patterns of
synaptic modification
Analogous to some heuristics in
the ConceptFormation
MindAgent

Maps, e.g. concept and percept
maps

Schema maps

Schema learning via inference,
evolution, reinforcement
learning

The majority of Units in a
Novamente configuration
Functionally-specialized
Novamente Units

Action-oriented units, full of
action schema-maps
Schemata mapping perceptual
Atoms into cognitive Atoms

Homeostatic Parameter
Adaptation MindAgent, built-in
GoalNodes

FeelingNodes and GoalNodes,
and associated maps

human brain
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The parallels get weaker, however, when one turns to dynamics. Very lit-
tle is known about the intermediate-scale dynamics of the brain. We know
basically how neurons work, but we don’t know much about the dynamics in-
terrelating the levels of different types of neurotransmitters in different brain
regions, nor about extracellular charge diffusion, or even about the dynamical
behavior of complex collectives of real neurons. Novamente has a number of
specific cognitive dynamics (e.g. probabilistic inference) that have no known
analogues in brain dynamics; but this means little since intermediate-level
brain dynamics is so poorly understood.

5.9 Emergent Structures

The dynamics of a Novamente system is largely controlled by the structure
of the Atom hypergraph, and that the structure of the Atom hypergraph is
strongly guided, and partly explicitly formed, by the dynamics of the system.
This structural-dynamical feedback can lead to all kinds of complex emergent
structures — some existing in the system at a given time, some manifesting
themselves as patterns over time, and some spatiotemporal in nature. Maps
are one manifestation of this feedback; but there is also a higher level of or-
ganization, in which the network of maps achieves certain emergent patterns.
Among these emergent patterns are the ones identified in the psynet model
of mind: the dual network and the self.

The Dual Network

The dual network, in Novamente, takes a fairly simple and direct form:

e the heterarchical aspect consists of the subnetwork defined by symmetric
logical links and/or AssociativeLinks;

e the hierarchical aspect consists of the subnetwork defined by asymmetric
logical links and associative links, and the subnetwork defined by schemata
and their control relationships (schema A being said to control schema B
when A modifies B’s parameters significantly more than vice versa).

Schemata aside, the static aspect of the dual network is fairly straight-
forward. For instance, the ConceptNodes corresponding to different nations
may be interlinked by SimilarityLinks and AssociativeLinks: this is a small
“heterarchical network,” a subset of the overall heterarchical network within
a given Novamente’s Atom space. These nodes representing individual na-
tions may all inherit from the Nation ConceptNode (InheritanceLink being
an asymmetric logical link). This is a simple, static example of dual network
structure: elements that are related heterarchically are also close together in
their hierarchical relationships. This aspect of dual network structure falls
out pretty naturally from the intrinsic semantics of similarity, inheritance and
association.
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The control aspect of the dual network is less obvious and will only emerge
if the various MindAgents are operating together properly. For example, con-
sider a family of schemata, each concerned with recognizing some part of
speech: nouns, verbs, adjectives, etc. These schemata will have similarities
and associations with each other. They will all inherit from a handful of
more general schemata for analyzing words and their properties. But they
will also be controlled by these more general word-analysis schemata. Their
control parameters and their flow of execution will be modulated by these
more general control schemata. The coincidence of inheritance hierarchy and
control hierarchy, and the overlaying of this coincident hierarchy on the as-
sociative/similarity heterarchy, is the crux of the “dual network” structure.
It is not programmed into Novamente, but Novamente is designed so as to
encourage it to emerge.

Specifically, the emergence of this kind of dual network metapattern follows
fairly naturally from the harmonious interaction of:

inference building similarity and inheritance links;
importance updating, guiding the activation of atoms (and hence the ap-
plication of built-in primary cognitive processes to atoms) based on the
links between them;

e schema learning, which extends a schema’s applicability from one node to
another based on existing links between them (and based on observations
of past schema successes and failures, as will be explained later).

The dual network structure is a static representation of the dynamic coop-
eration of these processes. We have discussed it here on the Atom level, but
its manifestation on the map level is largely parallel, and equally important.

The Self

Just as important as the dual network is the mind structure that we call
the “self.” We stress that we are using a working definition of self, geared
towards serving as a usable guideline for AGI engineering. We deliberately
avoid ontological or existential discussions of the universal nature of selthood
and its relation to consciousness.

The “raw material” for Novamente’s self — the primary senses in which a
Novamente can self-reflect — consists of the collection of:

e patterns that the system has observed in itself as a whole, that is, the
structural and dynamical patterns within its internal dual-network;

e patterns that it has observed in its own external actions, that is, that
subnetwork of its dual network which involves tracking the procedure and
consequences of running various schema;

e patterns that the system has observed in its relationship with other intel-
ligent systems.
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What we call the self is then a collection of patterns recognized in this set.
Often the patterns recognized are very approximate ones, as the collection
of data involved is huge and diverse — even a computer doesn’t have the
resources to remember every detail of every thing it’s ever done. Furthermore,
the particular data items leading to the creation of the psynet-wide patterns
that define the self will often be forgotten, so that the self is a poorly grounded
pattern (tuning how poorly grounded it may be, and still be useful, will be a
subtle and crucial part of giving Novamente a useful, nontrivial sense of self).

On the map level, we may say that the self consists of:

e a set of self-image maps: maps that serve as an “internal images” of sig-
nificant aspects of a Novamente system’s structure or dynamics, or its
interactions with other intelligent systems;

e a larger map that incorporates various self-image maps along with other
Atoms (this is the emergent self).

The really interesting thing about the self is the feedback between declar-
ative, localized knowledge and distributed, procedural knowledge that it em-
bodies. As the collection of high-level patterns that is the self become more or
less active, they automatically move the overall behavior of the system in ap-
propriate directions. That is to say, as the system observes and reasons upon
its patterns of self, it can then adjust its behavior by controlling its various
internal processes in such a way as to favor patterns which have been observed
to contribute to coherent thought, “good feelings,” and satisfaction of goals.

We note the key role of interactions with humans in Novamente’s devel-
opment of self. While it would be theoretically possible to have self without
society, society makes it vastly easier, by giving vastly more data for self-
formation — and for a self to be able to function sufficiently in a world where
there are other selves, society is indispensable. In time, it may be interesting
to create a community of interacting Novamente Al systems. Initially, Nova-
mente will learn about itself through interacting with humans. As humans ask
it questions and chat with it, it will gain more and more information not only
about humans but about what Novamente itself is, from the point of view of
others. This will shape its future activities both explicitly and implicitly.

6 Interacting with Humans and Data Stores

The deployment of Novamente for knowledge management and analysis in-
volves attention to many issues beyond those occurring in relation to “Nova-
mente AGI” in general. Most of these issues fall into the categories of data
sources and human-computer interaction.

The optimal way of handling such issues is domain-dependent. For the
bioinformatics applications, we have taken an approach guided by the partic-
ular needs of bioscientists analyzing datasets generated via high-throughput



The Novamente Artificial Intelligence Engine 105

genomics equipment. This section contains a brief description of our plans in
these areas.

A key conceptual point arising here is the relationship between AI and
TA (Intelligence Augmentation). Its ambitious long-term AGI goals notwith-
standing, it is very clear that in the medium term Novamente is not going
to outperform human intelligence all around. Rather, it should be viewed as
a complement to individual and collective human intelligence. Humans will
learn from Novamente’s unique insights, and Novamente will also learn from
humans. Specifically, Novamente leverages human intelligence by:

e ingesting data encoded by humans in databases;

e ingesting knowledge specifically encoded by humans for Novamente use;

e learning from its dialogues and interactions with humans;

e human construction of training sets for supervised categorization;

e learning from humans’ ratings of its own and other humans’ answers to
queries;

The design of appropriate user interfaces embodying these factors is a
significant undertaking in itself, and not one that we will enlarge on in this
chapter. Here we will restrict ourselves to a brief discussion of the key features
required, and the most salient issues that arise with them.

6.1 Data Sources

We have already discussed the conceptual issues involved with feeding Nova-
mente databases in Section 2.2 above.

As noted there, Novamente is intended to work with external databases
that have been integrated according to a “knowledge integration” method-
ology. This means that translators must be written, mapping the schemata
within DB’s into XML structured according to Novamente’s XML DTD. This
effectively maps database information into Novamente nodes and links. In this
manner, a unified data warehouse may be built up, containing a diverse mix
of data and abstract information. Table 10 and Fig. 8 show an example of

the mapping of relational database table elements into Novamente nodes and
links.

ID CompanyName EIN ParentCo CEO
2003 Postindustrial Widgets LLC 123-45-6789 2453 J. J. James
2453 The Associated 897-65-4321 null null

Amalgamated Group, Inc.

Table 10: Example RDB table
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Fig. 8: Depiction of RDB table as Novamente nodes and links

Regarding the substantial amount of knowledge in contemporary databases
as textual rather than structured, Novamente can ingest text using simplified
statistical methods, and we have experimented with this in the context of bio-
logical research papers. But, real natural language understanding is obtained
only by leaving text processing behind, and having Novamente translate back
and forth between linguistic character sequences on the one hand, and seman-
tically meaningful nodes and links on the other. This requires that natural
language processing be implemented in a very deep way, as part and parcel
of abstract Novamente cognition.

We believe the Novamente design can overcome the problems experienced
by contemporary NLP algorithms, due to its integrative approach, which in-
volves carrying out syntactic analysis via logical unification, a process that
automatically incorporates available semantic and pragmatic knowledge into
its behavior. We have not yet implemented NLP in the Novamente system,
but our experience with a similar implementation in the Webmind system
gives us reasonable confidence here. We return to this issue below.

6.2 Knowledge Encoding

Sometimes the data available in existing databases will not be enough to
bring Novamente “up to speed” on a pertinent area. A significant proportion
of human knowledge is “tacit” and is never written down anywhere, textually
or in relational or quantitative form. Furthermore, in the case of knowledge
that is expressed only in difficult-to-comprehend textual documents, Nova-
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mente’s understanding may be enhanced by providing it with portions of the
knowledge in explicit form.

For these reasons, it will sometimes be valuable to have humans encode
knowledge formally, specifically for ingestion by Novamente. There are two
different approaches here:

e “expert system” style formal language encoding of knowledge;
e knowledge entry via interactive Web forms.

The Web forms approach was prototyped at Webmind Inc. and seemed
to be a reasonable way for individuals with little training to encode large
amounts of relatively simple information. For formal language encoding, we
have developed a formal language called NQL, which is similar to Cyc-L but
has a much simpler syntax.

We caution that we are not proposing a traditional “expert systems” ap-
proach here, nor a traditional “common sense” knowledge encoding project a
la Cyc. We anticipate that well less than 1% of the knowledge in Novamente
will be placed there via human knowledge encoding. In our view, the role of
knowledge encoding should be to fill in gaps, not to supply a fundamental
knowledge base.

6.3 Querying

We have discussed how knowledge gets into Novamente — but how does it get
out? How do humans ask Novamente questions? How do they iterate with
the system to cooperatively find and produce knowledge? Our intention is to
create a prototype user interface that is integrative in nature, encompassing
a variety of complementary mechanisms.

1 Search Engine style queries
Manhattan sushi restaurants

2 Natural language queries
I want information on outstanding sushi restaurants in
Manhattan

3 Formal language queries

X: X inheritsFrom restaurant AND
Y: Y inheritsFrom sushi AND
sells(X, Y) AND quality(Y, outstanding)

4 Interactive conversation encompassing both NLP and formal lan-
guage queries

5 Web forms queries covering common cases

6 Export of data into spreadsheets and other analytic software

Table 11: Different types of queries for Novamente
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Practical experimentation with these mechanisms in a real-world data
analysis context will teach us which are found most valuable by human users
in which contexts; and this will guide further refinement of the Novamente Ul
and also of Novamente’s internal query processing mechanisms.

6.4 Formal Language Queries

For untrained users, natural language queries and natural language conversa-
tion are clearly the most desirable interaction modalities. For trained expert
users, on the other hand, there may be significant advantages to the use of
formal language queries, or of queries mixing formal with natural language.

Formal queries allow a level of precision not obtainable using natural lan-
guage. Furthermore — and this is a critical point — by having expert users
submit the same queries in both natural language and formal-language for-
mat, Novamente will gain pragmatic knowledge about query interpretation.
This is an example of how Novamente can learn from humans, who at least
initially will be far smarter than it at interpreting complex human-language
sentences.

For example, consider the query:

I want information on outstanding sushi restaurants in Manhattan
As a formal language query, this becomes simply:

Find X, Y so that:
Inheritance X ¢‘Japanese restaurant’’
location X Manhattan
sells X Y
Inheritance Y Sushi
quality Y outstanding

Or, consider:

I want information on profitable companies from the United
States that sell their services to schools.

A sentence like this poses interpretative problems for current NLP systems.
They have trouble determining which is the antecedent of “their”: “profitable
companies” or “the United States.” Making the correct choice requires real-
world understanding or extensive domain-specific system tuning. On the other
hand, for an expert user, creating an appropriate formal language query to
cover this case is easy:
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Inheritance X ‘‘United States’’
based Y X

Inheritance Y profitable

sells Y Z

buys Z W

Inheritance W ‘‘school’’

The initial Novamente NLP system may sometimes make errors resolving
sentences like the above. If a user submits this query to Novamente in both
English and formal-language form, then Novamente will observe the correct
interpretation of the sentence, and adjust its semantic mapping schemata
accordingly (via the activity of the schema learning Mind Agents). Then the
next time it sees a similar sentence, it will be more likely to make the right
judgment.

When a human child learns language, they correct their interpretations via
observing others’ interpretations of utterances in the real world. Novamente
will have fewer opportunities than humans to make this kind of observation-
based correction, but as partial compensation, it has the ability to compare
natural language sentences with expert-produced formal language renditions.
And this “language teaching” need not be done as a special process, it may oc-
cur as a part of ordinary system usage, as expert users submit formal language
queries and NL queries side by side.

6.5 Conversational Interaction

The “query/response” interaction modality is important and valuable, but
it has its limitations. Often one wishes to have a series of interactions with
persistent context —i.e., a conversation. Novamente is designed to support this,
as well as more conventional query/response interactions. We are currently
prototyping Novamente conversations in the context of the toy ShapeWorld
environment.

Conversational interaction harmonizes nicely with the idea of mixed for-
mal/natural language communication discussed above. The conversation ex-
ample given in Table 3 above illustrates this concept concretely.

As we have not currently implemented any NLP at all in Novamente,
achieving this sort of conversation with Novamente remains an R&D endeavor
with the usual associated risks. Our current applications of Novamente are
more along the lines of data analysis. However, we did prototype interactive
conversation in the related Webmind software system, to a limited extent,
and from this experience we gained a thorough understanding of the issues
involved in approaching such functionality.

6.6 Report Generation

Another useful (and much simpler) human interaction functionality is report
generation. The system will be able to automatically generate summary re-
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ports containing information pertinent to user queries, or simply summarizing
interesting patterns it has found through its own spontaneous activity. Reports
may contain:

quantitative data;

relationships expressed in formal language (predicate expressions);
natural language produced by “language generation” and “text summa-
rization” algorithms.

6.7 Active Collaborative Filtering and User Modeling

Finally, Novamente will gather information about human preferences in gen-
eral, and the preferences of its individual users, through techniques refined
in the “active collaborative filtering” community. Essentially, this means that
users will be asked to rate Novamente’s responses on several scales (e.g. use-
fulness, veracity). Furthermore, Novamente’s UI will be configured to collect
“implicit ratings” — information regarding how long they look at an informa-
tion item, what they use it for, etc. Novamente will incorporate this informa-
tion into its knowledge store, to be used as the subject of ongoing pattern
analysis, which will enable it to adapt its behavior so as to better serve future
users.

7 Example Novamente AI Processes

In this section we will briefly review a few of the most important AI pro-
cesses in the Novamente system: probabilistic inference, nonlinear attention
allocation, procedure learning, pattern mining, categorization, and natural
language processing. These processes form a decent cross-section of what goes
on in Novamente. We will illustrate each process with an intuitive example of
what the process contributes to Novamente.

Table 12 compares standard approaches to some cognitive tasks and the
approaches we have taken in Novamente.

Logical Inference
Standard Predicate, term, combinatory, fuzzy, probabilistic, nonmonotonic
Approaches or paraconsistent logic

Accurate management of uncertainty in a large-scale inference
Challenges context Inference Control: intelligent, context-appropriate guid-
ance of sequences of inferences

Probabilistic Term Logic tuned for effective large-scale uncertainty
management, coupled with a combination of noninferencial cogni-
tive processes for accurate control

Novamente
Approach
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Attention Allocation

Blackboard systems, neural network activation spreading

The system must focus on user tasks when needed, but also possess
te abilit to spontaneously direct its own attention without being
flighty or obsessive

Novamente’s nonlinear importance updating function combines
quantities derived from neural-net-like importance-updating and
blackboard-system-like cognitive utility analysis

Procedure Learning
Evolutionary programming, logic-based planning, feedforward
neural networks, reinforcement learning

Techniques tend to be unacceptably inefficient except in very nar-
row domains

A synthesis of techniques allows each procedure to be learned in
the context of a large number of other already-learned procedures,
enhancing efficiency considerably

Pattern Mining
Association rule mining, genetic algorithms, logical inference, ma-
chine learning, search algorithms

Finding complex patterns requires prohibitively inefficient search-
ing through huge search spaces

Integrative cognition is designed to home in on the specific subset
of search space containing complex but compact and significant
patterns

Human Language Processing
Numerous parsing algorithms and semantic mapping approaches
exist, like context-free grammars, unification grammars, link
grammars, conceptual graphs, conceptual grammars, etc

Integrating semantic and pragmatic understanding into the
syntax-analysis and production processes

Syntactic parsing is carried out via logical unification, in a manner
that automatically incorporates probabilistic semantic and prag-
mantic knowledge. Language generation is carried out in a simi-
larly integrative way, via inferential generalization

Table 12: Comparison of approaches to several cognitive tasks
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7.1 Probabilistic Inference

Logical inference has been a major theme of Al research since the very begin-
ning. There are many different approaches out there, including:

predicate logic, e.g. Cyc [51], SNARK [63];

combinatory logic [17, 24];

uncertain term logic, e.g. Pei Wang’s Non-Axiomatic Reasoning System
(NARS), see this volume;

probabilistic inference, e.g. Bayes nets [55], probabilistic logic program-
ming [35];

fuzzy logic [73];

paraconsistent logic [60];

nonmonotonic logic [65].

The basic task of computational logical deduction is a solved problem, but

there are still many open problems in the area of Al and logic, for instance:

inference control (what inferences to make when);

representation and manipulation of uncertainty (fuzzy vs. probabilistic vs.
multi-component truth value, etc);

optimal logical representation of specific types of knowledge, such as tem-
poral and procedural;

inferences beyond deduction, such as induction, abduction [45] and analogy
[43];

For these aspects of inference, many approaches exist with no consensus

and few unifying frameworks. Cyc is perhaps the most ambitious attempt to
unify all the different aspects of logical inference, but it’s weak on nonde-
ductive inference, and its control mechanisms are highly domain-specific and
clearly not generally adequate.

The practical need for logical inference in a national security context is

obvious. Among other things, inference can:

synthesize information from multiple DBs;

help interpret natural language;

help match user queries to system knowledge;

draw complex conclusions based on integrating a huge number of small
pieces of information.

To take a DB integration example, when Database 1 says:

‘‘Money often flows from XYZ Bank to Luxembourg.’’

and Database 2 says:

‘‘M. Jones has significant funds in XYZ bank.’’
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then abductive inference says:
‘‘Maybe M. Jones is sending money to Luxembourg.’’

which is a speculative, but possibly interesting, conclusion.

Novamente’s logical inference component consists of a number of MindA-
gents for creating logical links, both from other logical links (“inference”)
and from nonlogical links (“direct evaluation”). It involves several different
MindAgents:

LogicalLinkMiner MindAgent (builds logical links from nonlogical links)
FirstOrderInference MindAgent

HigherOrderInference MindAgent

LogicalUnification MindAgent

PredicateEvaluation Mind Agent

Temporallnference MindAgent

Here we will discuss just one of these, the FirstOrderInference (FOI)
MindAgent. This agent carries out three basic inference rules, deduction, in-
version and revision. It also converts similarity relationships into inheritance
relationships and vice versa. Fach of its inference rules is probabilistic in
character, using a special formula to take the probabilistic truth values of the
premises and outputting a probabilistic truth value for the conclusion. These
formulas are derived using a novel mathematical framework called Probabilis-
tic Term Logic (PTL). The PTL inversion formula is essentially Bayes’ rule;
the deduction formula is unique to Novamente, though it is simply derivable
from elementary probability theory. Revision is a weighted-averaging rule that
combines different estimates of the truth value of the same relationship, com-
ing from different sources. The rules deal with weight of evidence as well as
strength, and have variants dealing with distributional truth values.

The combination of deduction and inversion yields two forms of infer-
ence familiar from the literature: induction and abduction. Induction and
abduction are speculative forms of inference, intrinsically less certain than
deduction, and the corresponding formulas reflect this. Figure 9 shows the
basic patterns of deduction, induction abduction and revision. Examples of
first-order inference are shown in Table 13.

The dynamics of Novamente TruthValues under PTL can be quite sub-
tle. Unlike the NARS system and most other logical inference systems (loopy
Bayes’ nets being an exception), we do not rule out circular inference; we
embrace it. Circular inferences occur rampantly, ultimately resulting in a “at-
tractor state” of truth values throughout the system, in which all the truth
values of the Atoms are roughly (though not necessarily exactly) consistent
with each other. Interestingly, although PTL is based on formal logic, its
dynamics more closely resemble those of attractor neural networks.

Special additions to the FOI framework deal with hypothetical, subjective
and counterfactual knowledge, e.g. with statements such as
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Fig. 9: First-order inference on InheritanceLinks

Joe believes the Earth is flat.
If Texas had no oil, then...

It is important that the system be able to represent these statements
without actually coming to believe “the Earth is flat” or “Texas has no oil.”
This is accomplished by the HypotheticalLink construct and some simple
related inference rules.

Higher-order inference deals with relationships such as:

ownerOf (X, Y) IFF possessionOf (Y, X)

In this example we have used traditional predicate logic notation to rep-
resent the antisymmetry of the ownership and possession relationships, but
inside Novamente things are a little different: there are no variables at all.
Instead, a combinatory logic approach is used to give variable-free represen-
tations of complex relationships such as these, as networks of PredicateNodes
and SchemaNodes (including SchemaNodes embodying the “elementary com-
binators”). Using the C combinator, for instance, the above equivalence looks
like:
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Deduction:
IBM is a US company
US companies have EIN’s
|-
IBM has an EIN

Induction:
IBM is a US company
IBM manufactures computers
|-

US companies manufacture computers

Abduction:
Widgco is a US company selling widgets in Mexico
Jim is CEO of a US company selling widgets in Mexico
|-
Jim is CEO of Widgco

Revision:
According to the WSJ, Widgco will probably file for bankruptcy
According to the Times, Widgco will possibly file for bankruptcy
|-
Widgco will probably file for bankruptcy

Table 13: Examples of first-order inference

EquivalenceLink owner0f (C possession0f)

The absence of variables means that the higher-order inference rules are
basically the same as the first-order inference rules, but there are some new
twists, such as logical unification, and rules for mixing first-order and higher-
order relationships. The details by which these “twists” are resolved are due to
the integrative nature of the Novamente system: for instance logical unification
is carried out via Novamente’s integrative schema/predicate learning process,
incorporating evolutionary and reinforcement learning aloing with inference.

The logical inference MindAgents operate via importance-based selection:
that is, when they are activated by the scheduler, they choose Atoms to reason
on with probability proportional to their importance. Basic inference control
is thus effectively delegated to the ImportanceUpdating MindAgent. Special-
purpose inference control may be carried out by learned or programmed
schemata embodied in SchemalnstanceNodes.

7.2 Nonlinear-Dynamical Attention Allocation

Apart from formal logic, the other major theme in the history of Al is formal
neural network modeling. Neural networks excel at capturing the holistic and
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dynamical aspects of intelligence. Neural net inspired methods are used in
Novamente in two places:

e in the ImportanceUpdating MindAgent, which is used to direct the sys-
tem’s attention to different Atoms differentially;

e in the HebbianLearning MindAgent, which modifies the TruthValues of
logical links according to a special inference control mechanism that loosely
emulates the basic Hebbian learning rule.

However, although the activity of these two MindAgents is loosely inspired
by neural networks, we do not use neural net algorithms in Novamente. This
is a choice made for reasons of simplicity and efficiency. Instead of neural
nets, we use Probabilistic Term Logic in specially controlled ways that allow
it to roughly emulate the interesting dynamics one sees in attractor neural
networks.

We believe it probably would be possible to achieve the kind of precise
inference that PTL does, using purely neural net based methods; and we did
some preliminary work along these lines in 2002, developing an experimental
neural-net updating approach called “Hebbian Logic.” However, we believe
that would be an unacceptably inefficient approach given the realities of von
Neumann computer implementation.

7.3 Importance Updating

Attention allocation refers to the process by which the system determines how
much processor time each of its Atoms should get. This is done by the Impor-
tanceUpdating MindAgent, which adjusts the AttentionValues of the Nodes
and Relationships it touches. Importance is determined by a special formula,
the Importance Updating Function, that combines the other quantities that
form the AttentionValue. This formula is based on probabilistic inference,
and it may be interpreted as a special “inference control strategy” that does
inferences in a certain order for each Atom at each cycle.

The formula is simple but somewhat subtle and was arrived at through
a combination of mathematical analysis and practical experimentation. The
basic idea of the formula is implied by the following criteria:

1. In the absence of other causes, importance decays.

2. The LTT of an atom is computed to be high if accumulated recent-utility
is large, and low otherwise.

3. LTT is interpreted as a resting value, a lower bound at which importance
itself settles in the absence of other causes. It decays ever more slowly as
it approaches this resting value.

4. Recent increase in importance of closely related Atoms causes importance
to increase. Recent decrease of importance of closely related atoms causes
importance to decrease.

5. Above-average recent-utility causes slower importance decay.
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Note that among other things this framework encapsulates a model of
what psychologists call short-term memory or working memory or attentional
focus [5, 6]. The AttentionalFocus (our preferred term) is the set of highly
important atoms at a given time. Important atoms are likely to be selected
by the other dynamics to work with each other, and hence there’s a tendency
for them to stay important via building links to each other and spreading
activation amongst each other along these links. Yet, if important atoms do not
generate interesting new relationships, their recent-utility will drop and their
importance will decrease. The net result of these dynamics is to implement a
“moving bubble of attention” constituting the set of high-importance atoms.

Importance updating may be seen, to a certain extent, as a non-cognitive
part of the system, “merely scheduling.” But this is a very narrow view. The
maps forming in the network via the nonlinear dynamics of activation spread-
ing and importance updating, are very important for guiding node formation,
reasoning, association formation, and other mind processes. They constitute
a major nexus of knowledge storage as well.

7.4 Schema and Predicate Learning

Perhaps the most difficult aspect of Novamente Al is what we call “schema
and predicate learning.” This pertains to what we above referred to as “fully
general Al for small problem sizes.” Novamente’s procedure and predicate
learning component solves the problems:

e given a description of desired functionality, find a computer program (a
schema) that delivers the functionality;
e given a collection of information, find the patterns in it.

It solves these problems in a general way, but, there are significant com-
putational efficiency issues, which mean that in practice the methods may be
applied only on a small scale. Larger-scale problems of pattern recognition
and schema learning must be solved by using other cognitive processes to
do a breakdown into a collection of smaller problems, and using schema and
predicate learning on the smaller problems.

This, of course, is a heuristic approach familiar from human psychology.
People don’t solve big problems all at once, either. They solve little problems,
and slowly build on these, incrementally composing answers to larger prob-
lems. Humans developmentally learn “cognitive building blocks,” store them,
and apply them to various large scale problems. Oft-used building blocks are
kept around and frequently referred to.

The value of general pattern recognition in a data analysis context is ob-
vious, and will be reviewed in later subsections. Predicate learning, properly
deployed, is a very valuable tool for data analysis. It is also, as we shall see,
an essential part of language understanding.

The value of schema learning may be less transparent but is no less pro-
found. Schema learning is an essential component of Novamente’s “system
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control” philosophy. Initially, Novamente’s overall behavior will be guided by
human-encoded heuristic control schemata. But a system as complex as No-
vamente cannot perform optimally on this basis — adaptive learning of control
schemata is required. In particular, experience shows that complex logical
inferences require context-adapted control schemata.

The computer science literature contains a number of different approaches
to schema and predicate learning, which may be roughly categorized as:

logic-based planning algorithms;
neural networks;

evolutionary programming;
reinforcement learning;

hybrid approaches;
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None of these techniques is in itself sufficient for Novamente’s needs, and so
we have created our own algorithmic approach, integrating ideas from several
of these existing approaches.

Logic-based planning algorithms such as GraphPlan [12] and SATPlan [47]
planning have their strengths. Various techniques for probabilistic planning
with Markov methods [19] have proved relatively successful in robotics. But
in the end these are effective only in very narrowly constrained domains —
they are “brittle.”

Recurrent back-propagation [62] presents a theoretically general neural-
net-based approach to procedure learning, but its efficiency problems are se-
vere. More specialized neural net approaches, such as the clever neural net
based planning algorithms developed by James Albus and colleagues for use
in their integrative robotics architecture [3], display greater efficiency, but
apply only to narrow application domains.

Reinforcement Learning is an approach to procedure learning based on
“unsupervised” Hebbian learning [37] in the brain. Most famously, it has
been embodied in John Holland’s classifier systems [40]. While an interest-
ing approach conceptually, reinforcement learning has severe problems with
parameter tuning and scalability, and has rarely been successfully applied in
practice.

Finally, evolutionary programming emulates the process of natural selec-
tion to “evolve” procedures fulfilling given criteria. It is a very promising ap-
proach, but like neural network learning is has scalability problems — learning
can be very, very slow on large problems.

The approach we have taken in Novamente is a synthesis of logical, rein-
forcement learning, and evolutionary approaches. We use reinforcement learn-
ing (Hebbian learning via HebbianLinks) and logical planning (PTL higher-
order inference), but we view these as auxiliary techniques, not as primary
sources of schema and predicate learning power. Our primary schema and
predicate learning approach is to fix evolutionary programming’s scaling prob-
lems using a number of integrative-intelligence-oriented tricks.

One technique recently introduced for speeding up evolutionary program-
ming is the Bayesian Optimization Algorithm (BOA, see [56]). We make use of
an enhanced version of BOA, combined in a unique way with our combinatory-
logic representation of predicates and schemata, and modified to utilize PTL
as a Bayesian modeling algorithm (providing more intelligence than the deci-
sion tree based modeling algorithm used in standard BOA) and as an attention
allocation algorithm to steer the direction of evolution. In short, our approach
is:

e Represent schema/predicates using directed acyclic graphs whose nodes
and links are typed, and whose nodes contain “elementary functions”
drawn from: arithmetic, boolean and prob. logic, and combinatory logic.
The use of combinatory logic functions allows us to get looping and recur-
sion without using variables or cyclic graphs.
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e Fncode these program dags as “genotypes” using a special encoding
method.

e Search program space using a special variation of the Bayesian Optimiza-
tion Algorithm (BOA), acting on the genotypes, and using PTL (as a
modeling scheme and as a driver of attention allocation) to guide its op-
erations.

At time of writing, this is only partially implemented, and at the present
rate of progress it may be up to a year before it’s fully implemented and tested
(though limited versions have already been tested on various mathematical
problems, and will be extensively tested on real-world pattern recognition
problems during the next few months). We believe this will be a workable
approach, in terms of giving good average-case functionality for the general
small-problem-size schema and predicate learning problem.

How will we deal with learning larger schemata and predicates? Here we in-
tend to fall back on a common strategy used by brain-minds and other complex
systems: hierarchical breakdown. Novamente will not be able to learn general
large schemata and predicates, but it will be able to learn large schemata and
predicates that consist of small schemata or predicates whose internal nodes
refer to small schemata or predicates, whose internal nodes refer to small
schemata or predicates, etc. We have modified the BOA algorithm specifically
to perform well on hierarchical schemata or predicates. While this may seem
not to have the full generality one would like to see in an ” Artificial General
Intelligence,” we believe that this kind of hierarchical breakdown heuristic is
the way the human mind/brain works, and is essentially inevitable in any
kind of practical inteligent system, due to the plain intractability of the gen-
eral schema and predicate learning problem.

7.5 Pattern Mining

Now we turn briefly to some of the practical, commercial applications of the
current, partially-completed Novamente system. No process lies closer to the
heart of the “analysis of massive data stores” problem than pattern mining.
This is therefore an aspect of Novamente that we have thought about partic-
ularly carefully, in the context of both bioinformatics and national security
applications. Our current bioinformatics work with Novamente has been signif-
icantly successful in this area, finding never-before-detected patterns of inter-
regulation between genes by analyzing gene expression data in the context of
biological background knowledge, as shown in more detail in the Appendix to
this Chapter.
Conventional programs for unsupervised pattern mining include:

Principal Components Analysis (PCA) [44];
clustering algorithms;
use of optimization algorithms to search through “pattern space”;
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e association rule mining algorithms for huge datasets (such as Apriori [1]);
e neural net based pattern recognition (SOMs [48], backpropagation).

Apriori is a simple but powerful algorithm, and we intend to use it or
some variation thereof within the DINI framework’s Fisher process, to grab
potentially useful patterns out of the overall data warehouse and present them
to Novamente for further study. Apriori has no sense of semantics, it merely
finds combinations of data items that occur together with surprising frequency,
using a greedy “hill-climbing” approach; it is excellent in the role of an initial
filter through a data store that is too large to load into Novamente all at once.

Clustering algorithms are in common use in many domains; they fall into
several different categories, including [71]:

e agglomerative algorithms, generally useful for building hierarchical cate-
gory systems;

e partitioning algorithms, good for dividing data into a few large categories
(k-means, Bioclust [10], and others);

e statistical algorithms: Expectation Maximization.

Clustering tends to be a problematic technology, in that algorithms are
difficult to tune and validate. Each algorithm seems to be the best one — if
you look at the right sort of dataset. Novamente does agglomerative clustering
implicitly via the iterative action of the ConceptFormation MindAgent. There
is also a Clustering MindAgent which carries out explicit partitioning-based
clustering, perceiving the Atoms in the system as a symmetric weighted graph
composed of SimilarityLinks and partitioning this graph using a variant of the
Bioclust algorithm.

More powerful but more expensive than other techniques, predicate learn-
ing may be used to search the space of patterns in data for “fit” patterns.
Here “fitness” is defined as a combination of:

e compactness, or “Minimum Description Length” [8]; and
e frequency and clarity of occurrence in observed data.

Evolutionary-programming based predicate learning can find patterns
much subtler than those detectable via simple methods like Aprioro or clus-
tering.

Logical inference also plays a role here, in the sense that, once patterns
are found by any of the methods mentioned above, inference is able to make
plausible estimates as to the actual validity of the patterns. It not only ob-
serves how prominent the pattern is in observed data, but uses inference to
explore the similarity between the pattern and other observed patterns in
other datasets, thus making an integrative judgment of validity.

An example pattern found by Novamente through mining gene expres-
sion data is shown in the Appendix. In later Novamente versions, these pat-
terns could be presented to the user in a verbal form. Currently, patterns are
presented in a formal language, which must then be visualized by a UI or
verbalized by an expert human user.
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7.6 Natural Language Processing

Novamente is a general AGI architecture, not restricted to any particular type
of information input. We have discussed here how it may make use of symbolic-
type data loaded from RDBs, but in our current work with the system, we
are making equal use of its ability to process complex quantitative datasets
(e.g. gene expression data derived from microarrays). And, critically for prac-
tical data analysis/management functionality, the system is also capable of
processing linguistic information.

Some linguistic information may come into the system as sound, captured
via tape recorders, computer microphones, and the like. Handling this sort
of data requires some specialized quantitative-data preprocessing using tools
such as wavelet analysis [72]. We will not discuss these matters here, although
significant thought has gone into adapting Novamente for such purposes. In-
stead we will focus on linguistics, assuming the system is receiving language in
textual form, either from computer files or from the output of a voice-to-text
software program.

There is a host of natural language processing (NLP) technology out there,
but the plain fact is that none of it works very well. Modern NLP technology
works passably well if one of two criteria is met: the sentences involved are
very simple, or the sentences involved all pertain to a single, very narrow
domain.

It cannot yet deal with realistically complex utterances about the world in
general. Lexiquest®, Connexor? and other firms offer NLP tools that provide
pragmatically useful functionality in narrow domains, but there is nothing out
there that can, for example, take an e-mail grabbed randomly off the Internet
and correctly parse 90% of the sentences in it.

We believe the Novamente architecture has the potential to provide a real
breakthrough in NLP. This is because of its integrative nature. The biggest
problem in NLP today is integrating semantic and pragmatic knowledge into
the syntax parsing process [53]. Novamente, which automatically integrates
all forms of information at its disposal, is ideally set up to do this.

Specifically, one of the leading approaches to NLP parsing out there today
is “unification feature structure parsing.” [61] In this approach, parsing is done
through a process of unification of data structures representing sentences. This
approach fits snugly with Novamente’s LogicalUnification MindAgent, whose
design has been tuned especially for language applications. Typical unifica-
tion parsers work via specialized “linguistic unification” processes, but we
have shown theoretically that Novamente logical unification can carry out the
same process more powerfully. In addition to unification, feature structure
grammars typically involve a small number of special linguistic transforma-
tions (such as transformations to turn statements into questions); these can be

8www.lexiquest.com
9www . connexor . com
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expressed compactly as Novamente SchemaNodes, and conveniently learned
and manipulated in this form.
Consider, for example, the sentence

‘“AWI will be in New York with the new shipment on Tuesday.’’

An effective parser will analyze the parts of speech and syntactic relation-

ships in this sentence and produce a parse tree such as the one shown in Fig.
11.

<
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Fig. 11: Example parse tree

A parse tree like this will be found in Novamente via logical unification,
aided by other MindAgents. The representation of a parse tree in terms of No-
vamente nodes and links is straightforward, although it involves significantly
more nodes and links than the simple “parse tree” rendition shown in Fig. 11.

Once parsing is done, the really significant step comes, which is “semantic
mapping” — the use of syntactic understanding to carry out semantic inter-
pretation. Semantic mapping schemata — some provided by Novamente pro-
grammers, most learned through the system’s experience — are used to map
the Atoms representing the parse tree into Atoms representing the system’s
meaning, such as:

atTime(Location(Z, New York) AND with(Z, Y), 11/02/2003)
representative_of (Z,X)

name_of (X, ‘“AWI’’)

name_of (X, ‘‘Associated Widgets Incorporated’’)
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EIN(X, € €987654321° )
InheritancelLink(Y, shipment)
ContextLink (InheritancelLink (Y, new), 12/02/2003)

The process of language generation, used by Novamente to generate lan-
guage representing patterns it has found or ideas it has had, is the inverse
of this: it begins with a collection of Atoms representing semantic meanings,
uses special schemata to produce a collection of Atoms representing the parse
tree of a sentence, and then generates the sentence.

We are currently working with a prototype of this kind of parsing process,
which runs outside the Novamente core; and our experiments have been highly
successful, in the sense that we are able to successfully create accurate seman-
tic node-and-link structures from all reasonably simple English sentences, and
a percentage of complex ones. This is strongly encouraging in terms of the re-
sult that will be achievable when the ideas in the prototype are integrated
into the Novamente core, in accordance with the Novamente system design.

8 Conclusion

There are few Al projects aiming at general intelligence at the moment, and
most are represented in this volume. We feel that, among this select set, the
Novamente project is the one that has advanced the farthest in the prag-
matic aspects of design and software implementation. The Novamente design
possesses a concrete and detailed mathematical, conceptual and software de-
sign that provides a unified treatment of all major aspects of intelligence as
detailed in cognitive science and computer science.

Our prior experience with commercial and R&D oriented Al engineering
has taught us innumerable lessons, one of which is to never underestimate
the complexity and difficulty posed by the “just engineering” phases of the
project. Another important lesson concerns the need for experiential learning
as a way to train and teach a proto-AGI system.

While Novamente is currently partially engineered, the results we have
obtained with the system so far (see, e.g., the Appendix of this chapter) are
more along the lines of data mining than ambitious AGI. However, these
practical applications provide us with invaluable insight into the practical
issues that surround applications of AGI and proto-AGI systems to real-world
problems.

Given the dismal history of grand Al visions, we realize the need for cau-
tion in making grand claims for the as-yet undemonstrated abilities of our
system. But we do not consider history a good reason for conservatism as to
the future. We believe that by drawing on the best insights of existing Al
paradigms and integrating these within a novel synthetic framework based
on self-organization and experiential interactive learning, we have a serious
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chance of taking Al to a new level, and approaching genuine Artificial Gen-
eral Intelligence. And we have a precise design and plan of action for testing
our hypotheses in this regard.
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Appendix: Novamente Applied to Bioinformatic Pattern
Mining

In this Appendix we present an example of what the current version of Nova-
mente can do in the context of bioinformatic data analysis. The work reported
here was done in the context of testing an early version of the Biomind Toolkit
product for gene expression data analysis [7]. It is described in a forthcoming
journal article [31].

What we will discuss here is one among several applications of Novamente
to gene expression data analysis — “regulatory network inference,” which in-
volves studying gene expression data and recognizing the patterns that inter-
relate the expression levels of genes. This is a problem of the general nature
of “inferring the dynamical rule of a system from samples of its trajectory.”

The data presented to Novamente in this case consists of:

e A collection of “gene expression” datasets. Some of these are time series
data sets, reporting the expression levels of all the genes in a genome (e.g.,
human, yeast) at a series of time points during the cell cycle of a single
cell. Some are categorical datasets, giving the expression levels of genes
in various individuals, along with data about category membership of the
individuals (e.g., cancerous versus non-cancerous).

e A collection of biological background knowledge, derived from biological
databases such as SGD, MIPS, BLAST, the Gene Ontology, and so forth
[52].

An example rule inferred from this sort of data is a temporal pattern in
the expression levels of the five specific genes that are familiar to molecular
biologists and known by the labels SIC1, PCL2, CLN3, ACE2, and SWI5:

The arrows ==> represent probabilistic logical implications (Implication-
Links). In this case, all relations involved in a given implication refer to the
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C = (LOW(SIC1) OR MOD_LOW(SIC1)) AND (LOW(PCL2))
AND (LOW(CLN3)) OR (MOD_LOW(CLN3))

C AND EXTRA_HIGH(SWI5) ==>
DECREASE(SWI5) AND INCREASE(ACE2)

C AND (MOD_HIGH(SWI5) OR HIGH(SWI5)) ==>
INCREASE(SWI5) AND INCREASE(ACE2)

Table 14: Example regulatory network patterns

same time point. The predicates LOW, MOD LOW (moderately low), DE-
CREASE, etc. are quantitatively grounded using probabilistic logic, with pa-
rameters adaptively tuned to the dataset under analysis.

In this pattern, the inferred proposition C gives a context, in which the
dependence of the correlation between SWI5’s movements and ACE2’s move-
ments upon the level of SWI5 can be observed. The system is not only de-
tecting a contextual relationship here, it is detecting a context in which a
certain gene’s value can serve as the context for a dynamic relationship be-
tween genes. This is exactly the kind of complex interrelationship that makes
genetic dynamics so subtle, and that standard data mining approaches are
not capable of detecting.

The above example does not use background knowledge; it is strictly a
pattern in gene expression values. The following is a simple example of a
pattern involving background knowledge.

ConceptNode C

EquivalenceLink

(MemberLink X C)

(Associativelink X (transcriptional_regulation (CUP1)))

MOD_LOW(FKH2, t) AND LOW(MCM1, t) AND (MOD_LOW(C) OR LOW(C))
==>
INCREASE(FKH2, t+1) AND STABLE(MCM1, t+1) AND INCREASE(C)

Table 15: Example regulatory network patterns

Here the ConceptNode C is the category of genes that are associated with
transcriptional regulation of the gene CUPI. The knowledge of which genes
are associated with transcriptional regulation of CUP1 comes from biological
databases — not from any single database, but from integration of information
from multiple databases using Novamente inference. The decision to incorpo-
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rate this particular category in the rule was made by Novamente as part of
its unsupervised pattern mining process.

In this particular application — like many others — the Novamente ap-
proach is significantly more effective than traditional statistics, decision trees,
straightforward genetic programming based rule induction, or other tradi-
tional machine learning methods. It can find subtler patterns — both in gene
expression data alone, and via judiciously incorporating knowledge from bio-
logical databases.
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1 Introduction

This chapter explores the concept of “artificial general intelligence” (AGI) —
its nature, importance, and how best to achieve it. Our' theoretical model
posits that general intelligence comprises a limited number of distinct, yet
highly integrated, foundational functional components. Successful implemen-
tation of this model will yield a highly adaptive, general-purpose system that
can autonomously acquire an extremely wide range of specific knowledge and
skills. Moreover, it will be able to improve its own cognitive ability through
self-directed learning. We believe that, given the right design, current hard-
ware/software technology is adequate for engineering practical AGI systems.
Our current implementation of a functional prototype is described below.

The idea of “general intelligence” is quite controversial; I do not sub-
stantially engage this debate here but rather take the existence of such non-
domain-specific abilities as a given [14]. It must also be noted that this essay
focuses primarily on low-level (i.e., roughly animal level) cognitive ability.
Higher-level functionality, while an integral part of our model, is only ad-
dressed peripherally. Finally, certain algorithmic details are omitted for rea-
sons of proprietary ownership.

2 General Intelligence

Intelligence can be defined simply as an entity’s ability to achieve goals — with
greater intelligence coping with more complex and novel situations. Complex-
ity ranges from the trivial — thermostats and mollusks (that in most contexts
don’t even justify the label “intelligence”) — to the fantastically complex; au-
tonomous flight control systems and humans.

Adaptivity, the ability to deal with changing and novel requirements, also
covers a wide spectrum: from rigid, narrowly domain-specific to highly flexible,
general purpose. Furthermore, flexibility can be defined in terms of scope and

ntellectual property is owned by Adaptive A.IL, Inc.
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permanence — how much, and how often it changes. Imprinting is an example
of limited scope and high permanence, while innovative, abstract problem
solving is at the other end of the spectrum. While entities with high adaptivity
and flexibility are clearly superior — they can potentially learn to achieve any
possible goal — there is a hefty efficiency price to be paid: For example, had
Deep Blue also been designed to learn language, direct airline traffic, and do
medical diagnosis, it would not have beaten a world chess champion (all other
things being equal).

General Intelligence comprises the essential, domain-independent skills
necessary for acquiring a wide range of domain-specific knowledge (data and
skills) — i.e. the ability to learn anything (in principle). More specifically, this
learning ability needs to be autonomous, goal-directed, and highly adaptive:

Autonomous. Learning occurs both automatically, through exposure to
sense data (unsupervised), and through bi-directional interaction with the
environment, including exploration and experimentation (self-supervised).

Goal-directed. Learning is directed (autonomously) towards achieving vary-
ing and novel goals and sub-goals — be they “hard-wired,” externally
specified, or self-generated. Goal-directedness also implies very selective
learning and data acquisition (from a massively data-rich, noisy, complex
environment).

Adaptive. Learning is cumulative, integrative, contextual and adjusts to
changing goals and environments. General adaptivity not only copes with
gradual changes, but also seeds and facilitates the acquisition of totally
novel abilities.

General cognitive ability stands in sharp contrast to inherent specializa-
tions such as speech- or face-recognition, knowledge databases/ontologies, ex-
pert systems, or search, regression or optimization algorithms. It allows an
entity to acquire a virtually unlimited range of new specialized abilities. The
mark of a generally intelligent system is not having a lot of knowledge and
skills, but being able to acquire and improve them — and to be able to appro-
priately apply them. Furthermore, knowledge must be acquired and stored in
ways appropriate both to the nature of the data, and to the goals and tasks
at hand.

For example, given the correct set of basic core capabilities, an AGI system
should be able to learn to recognize and categorize a wide range of novel
perceptual patterns that are acquired via different senses, in many different
environments and contexts. Additionally, it should be able to autonomously
learn appropriate, goal-directed responses to such input contexts (given some
feedback mechanism).

We take this concept to be valid not only for high-level human intelli-
gence, but also for lower-level animal-like ability. The degree of “generality”
(i.e., adaptability) varies along a continuum from genetically “hard-coded”
responses (no adaptability), to high-level animal flexibility (significant learn-
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ing ability as in, say, a dog), and finally to self-aware human general learning
ability.

2.1 Core Requirements for General Intelligence

General intelligence, as described above, demands a number of irreducible
features and capabilities. In order to proactively accumulate knowledge from
various (and/or changing) environments, it requires:

1. senses to obtain features from “the world” (virtual or actual);
2. a coherent means for storing knowledge obtained this way; and
3. adaptive output/actuation mechanisms (both static and dynamic).

Such knowledge also needs to be automatically adjusted and updated on
an ongoing basis; new knowledge must be appropriately related to existing
data. Furthermore, perceived entities/patterns must be stored in a way that
facilitates concept formation and generalization. An effective way to represent
complex feature relationships is through vector encoding [7].

Any practical applications of AGI (and certainly any real- time uses) must
inherently be able to process temporal data as patterns in time — not just as
static patterns with a time dimension. Furthermore, AGIs must cope with data
from different sense probes (e.g., visual, auditory, and data), and deal with
such attributes as: noisy, scalar, unreliable, incomplete, multi-dimensional
(both space/time dimensional, and having a large number of simultaneous
features), etc. Fuzzy pattern matching helps deal with pattern variability and
noise.

Another essential requirement of general intelligence is to cope with an
overabundance of data. Reality presents massively more features and detail
than is (contextually) relevant, or can be usefully processed. Therefore, why
the system needs to have some control over what input data is selected for
analysis and learning — both in terms of which data, and also the degree of
detail. Senses (“probes”) are needed not only for selection and focus, but also
in order to ground concepts — to give them (reality-based) meaning.

While input data needs to be severely limited by focus and selection, it
is also extremely important to obtain multiple views of reality — data from
different feature extractors or senses. Provided that these different input pat-
terns are properly associated, they can help to provide context for each other,
aid recognition, and add meaning.

In addition to being able to sense via its multiple, adaptive input groups
and probes, the AGI must also be able to act on the world — be it for explo-
ration, experimentation, communication, or to perform useful actions. These
mechanisms need to provide both static and dynamic output (states and be-
havior). They too, need to be adaptive and capable of learning.

Underlying all of this functionality is pattern processing. Furthermore,
not only are sensing and action based on generic patterns, but so is internal
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cognitive activity. In fact, even high-level abstract thought, language, and
formal reasoning — abilities outside the scope of our current project — are
“just” higher-order elaborations of this [20].

2.2 Advantages of Intelligence Being General

The advantages of general intelligence are almost too obvious to merit listing;
how many of us would dream of giving up our ability to adapt and learn
new things? In the context of artificial intelligence this issue takes on a new
significance.

There exists an inexhaustible demand for computerized systems that can
assist humans in complex tasks that are highly repetitive, dangerous, or that
require knowledge, senses or abilities that its users may not possess (e.g.,
expert knowledge, “photographic” recall, overcoming disabilities, etc.). These
applications stretch across almost all domains of human endeavor.

Currently, these needs are filled primarily by systems engineered specifi-
cally for each domain and application (e.g., expert systems). Problems of cost,
lead-time, reliability, and the lack of adaptability to new and unforeseen situ-
ations severely limit market potential. Adaptive AGI technology, as described
in this paper, promises to significantly reduce these limitations and to open
up these markets. It specifically implies:

e That systems can learn (and be taught) a wide spectrum of data and
functionality
They can adapt to changing data, environments and uses/goals
This can be achieved without program changes — capabilities are learned,
not coded

More specifically, this technology can potentially:

e Significantly reduce system “brittleness” ? through fuzzy pattern matching
and adaptive learning — increasing robustness in the face of changing and
unanticipated conditions or data.

e Learn autonomously, by automatically accumulating knowledge about new
environments through exploration.

e Allow systems to be operator-trained to identify new objects and patterns;
to respond to situations in specific ways, and to acquire new behaviors.

e Fliminate programming in many applications. Systems can be employed
in many different environments, and with different parameters simply
through self-training.

e Facilitate easy deployment in new domains. A general intelligence engine
with pluggable custom input/ output probes allows rapid and inexpensive
implementation of specialized applications.

2“Brittleness” in Al refers to a system’s inability to automatically adapt to
changing requirements, or to cope with data outside of a predefined range — thus
“breaking”.
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From a design perspective, AGI offers the advantage that all effort can be
focused on achieving the best general solutions — solving them once, rather
than once for each particular domain. AGI obviously also has huge economic
implications: because AGI systems acquire most of their knowledge and skills
(and adapt to changing requirements) autonomously, programming lead times
and costs can be dramatically reduced, or even eliminated.

The fact that no (artificial!) systems with these capabilities currently exist
seems to imply that it is very hard (or impossible) to achieve these objectives.
However, I believe that, as with other examples of human discovery and inven-
tion, the solution will seem rather obvious in retrospect. The trick is correctly
choosing a few critical development options.

3 Shortcuts to AGI

When explaining Artificial General Intelligence to the uninitiated one often
hears the remark that, surely, everyone in Al is working to achieve general
intelligence. This indicates how deeply misunderstood intelligence is. While
it is true that eventually conventional (domain-specific) research efforts will
converge with those of AGI, without deliberate guidance this is likely to be
a long, inefficient process. High-level intelligence must be adaptive, must be
general — yet very little work is being done to specifically identify what general
intelligence is, what it requires, and how to achieve it.

In addition to understanding general intelligence, AGI design also requires
an appreciation of the differences between artificial (synthetic) and biological
intelligence, and between designed and evolved systems.

Our particular approach to achieving AGI capitalizes on extensive analysis
of these issues, and on an incremental development path that aims to min-
imize development effort (time and cost), technical complexity, and overall
project risks. In particular, we are focusing on engineering a series of func-
tional (but low-resolution/capacity) proof-of-concept prototypes. Performance
issues specifically related to commercialization are assigned to separate devel-
opment tracks. Furthermore, our initial effort concentrates on identifying and
implementing the most general and foundational components first, leaving
high-level cognition, such as abstract thought, language, and formal logic,
for later development (more on that later). We also focus more on selective,
unsupervised, dynamic, incremental, interactive learning; on noisy, complex,
analog data; and on integrating entity features and concept attributes in one
comprehensive network.

While our project may not be the only one proceeding on this particular
path, it is clear that a large majority of current Al work follows a substantially
different overall approach. Our work focuses on:

e general rather than domain-specific cognitive ability;
e acquired knowledge and skills, versus loaded databases and coded skills;
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bi-directional, real-time interaction, versus batch processing;

adaptive attention (focus and selection), versus human pre-selected data;
core support for dynamic patterns, versus static data;

unsupervised and self-supervised, versus supervised learning;

adaptive, self-organizing data structures, versus fixed neural nets or
databases;

contextual, grounded concepts, versus hard-coded, symbolic concepts;
explicitly engineering functionality, versus evolving it;

conceptual design, versus reverse-engineering;

general proof-of-concept, versus specific real applications development;
animal level cognition, versus abstract thought, language, and formal logic.

Let’s look at each of these choices in greater detail.
General rather than domain-specific cognitive ability

The advantages listed in the previous section flow from the fact that generally
intelligent systems can ultimately learn any specialized knowledge and skills
possible — human intelligence is the proof! The reverse is obviously not true.

A complete, well-designed AGI’s ability to acquire domain- specific ca-
pabilities is limited only by processing and storage capacity. What is more,
much of its learning will be autonomous — without teachers, and certainly
without explicit programming. This approach implements (and capitalizes on)
the essence of “Seed AI” — systems with a limited, but carefully chosen set
of basic, initial capabilities that allow them (in a “bootstrapping” process) to
dramatically increase their knowledge and skills through self-directed learning
and adaptation. By concentrating on carefully designing the seed of intelli-
gence, and then nursing it to maturity, one essentially bootstraps intelligence.
In our AGI design this self-improvement takes two distinct forms/phases:

1. Coding the basic skills that allow the system to acquire a large amount
of specific knowledge.

2. The system reaching sufficient intelligence and conceptual understanding
of its own design, to enable it to deliberately improve its own design.

Acquired knowledge and skills versus loaded databases and coded skills

One crucial measure of general intelligence is its ability to acquire knowledge
and skills, not how much it possesses. Many Al efforts concentrate on accu-
mulating huge databases of knowledge and coding massive amounts of specific
skills. If AGI is possible — and the evidence seems overwhelming — then much
of this effort will be wasted. Not only will an AGI be able to acquire these
additional smarts (largely) by itself, but moreover, it will also be able to keep
its knowledge up-to-date, and to improve it. Not only will this save initial data
collection and preparation as well as programming, it will also dramatically
reduce maintenance.
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An important feature of our design is that there are no traditional
databases containing knowledge, nor programs encoding learned skills: All
acquired knowledge is integrated into an adaptive central knowledge/skills
network. Patterns representing knowledge are associated in a manner that fa-
cilitates conceptualization and sensitivity to context. Naturally, such a design
is potentially far less prone to brittleness, and more resiliently fault-tolerant.

Bi-directional, real-time interaction versus batch processing

Adaptive learning systems must be able to interact bi-directionally with the
environment — virtual or real. They must both sense data and act/react on
an ongoing basis. Many Al systems do all of their learning in batch mode and
have little or no ability to learn incrementally. Such systems cannot easily
adjust to changing environments or requirements — in many cases they are
unable to adapt beyond the initial training set without reprogramming or
retraining.

In addition to real-time perception and learning, intelligent systems must
also be able to act. Three distinct areas of action capability are required:

1. Acting on the “world” — be it to communicate, to navigate or explore, or
to manipulate some external function or device in order to achieve goals.
2. Controlling or modifying the system’s internal parameters (such as learn-
ing rate or noise tolerance, etc.) in order to set or improve functionality.
3. Controlling the system’s sense input parameters such as focus, selection,
resolution (granularity) as well as adjusting feature extraction parameters.

Adaptive attention (focus and selection) versus human pre-selected data

As mentioned earlier, reality presents far more sense data abundance, detail,
and complexity than are required for any given task — or than can be processed.
Traditionally, this problem has been dealt with by carefully selecting and
formatting data before feeding it to the system. While this human assistance
can improve performance in specific applications, it is often not realized that
this additional intelligence resides in the human, not the software.

Outside guidance and training can obviously speed learning; however, AGI
systems must inherently be designed to acquire knowledge by themselves.
In particular, they need to control what input data is processed — where
specifically to obtain data, in how much detail, and in what format. Absent
this capability the system will either be overwhelmed by irrelevant data or,
conversely, be unable to obtain crucial information, or get it in the required
format. Naturally, such data focus and selection mechanisms must themselves
be adaptive.

Core support for dynamic patterns versus static data

Temporal pattern processing is another fundamental requirement of interac-
tive intelligence. At least three aspects of AGI rely on it: perception needs
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to learn/recognize dynamic entities and sequences, action usually comprises
complex behavior, and cognition (internal processing) is inherently temporal.
In spite of this obvious need for intrinsic support for dynamic patterns, many
AT systems only process static data; temporal sequences, if supported at all,
are often converted (“flattened”) externally to eliminate the time dimension.
Real-time temporal pattern processing is technically quite challenging, so it
is not surprising that most designs try to avoid it.

Unsupervised and self-supervised versus supervised learning

Auto-adaptive systems such as AGIs require comprehensive capabilities to
learn without supervision. Such teacher-independent knowledge and skill ac-
quisition falls into two broad categories: unsupervised (data-driven, bottom-
up), and self-supervised (goal-driven, top-down). Ideally these two modes of
learning should seamlessly integrate with each other — and of course, also with
other, supervised methods.

Here, as in other design choices, general adaptive systems are harder to
design and tune than more specialized, unchanging ones. We see this par-
ticularly clearly in the overwhelming focus on back-propagation® in artificial
neural network (ANN) development. Relatively little research aims at bet-
ter understanding and improving incremental, autonomous learning. Our own
design places heavy emphasis on these aspects.

Adaptive, self-organizing data structures versus fixed neural nets or databases

Another core requirement imposed by data/goal-driven, real-time learning is
having a flexible, self-organizing data structure. On the one hand, knowledge
representation must be highly integrated, while on the other hand it must be
able to adapt to changing data densities (and other properties), and to varying
goals or solutions. Our AGI encodes all acquired knowledge and skills in one
integrated network-like structure. This central repository features a flexible,
dynamically self-organizing topology. The vast majority of other Al designs
rely either on loosely-coupled data objects or agents, or on fixed network
topologies and pre-defined ontologies, data hierarchies or database layouts.
This often severely limits their self-learning ability, adaptivity and robustness,
or creates massive communication bottlenecks or other performance overhead.

Contextual, grounded concepts versus hard-coded, symbolic concepts

Concepts are probably the most important design aspect of AGI; in fact, one
can say that “high-level intelligence s conceptual intelligence.” Core charac-
teristics of concepts include their ability to represent ultra-high-dimensional
fuzzy sets that are grounded in reality, yet fluid with regard to context. In
other words, they encode related sets of complex, coherent, multi-dimensional

3Back-propagation is one of the most powerful supervised training algorithms;
it is, however, not particularly amenable to incremental learning.
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patterns that represent features of entities. Concepts obtain their ground-
ing (and thus their meaning) by virtue of patterns emanating from features
sensed directly from entities that exist in reality. Because concepts are defined
by wvalue ranges within each feature dimension (sometimes in complex rela-
tionships), some kind of fuzzy pattern matching is essential. In addition, the
scope of concepts must be fluid; they must be sensitive and adaptive to both
environmental and goal contexts.

Autonomous concept formation is one of the key tests of intelligence. The
many Al systems based on hard-coded or human-defined concepts fail this
fundamental test. Furthermore, systems that do not derive their concepts via
interactive perception are unable to ground their knowledge in reality, and
thus lack crucial meaning. Finally, concept structures whose activation cannot
be modulated by context and degree of fit are unable to capture the subtlety
and fluidity of intelligent generalization. In combination, these limitations will
cripple any aspiring AGI.

Explicitly engineering functionality versus evolving it

Design by evolution is extremely inefficient — whether in nature or in computer
science. Moreover, evolutionary solutions are generally opaque; optimized only
to some specified “cost function”, not comprehensibility, modularity, or main-
tainability. Furthermore, evolutionary learning also requires more data or tri-
als than are available in everyday problem solving.

Genetic and evolutionary programming do have their uses — they are pow-
erful tools that can be used to solve very specific problems, such as opti-
mization of large sets of variables; however they generally are not appropriate
for creating large systems of infrastructures. Artificially evolving general in-
telligence directly seems particularly problematic because there is no known
function measuring such capability along a single continuum — and absent
such direction, evolution doesn’t know what to optimize. One approach to
deal with this problem is to try to coax intelligence out of a complex ecology
of competing agents — essentially replaying natural evolution.

Overall, it seems that genetic programming techniques are appropriate
when one runs out of specific engineering ideas. Here is a short summary of
advantages of explicitly engineered functionality:

e Designs can directly capitalize on and encode the designer’s knowledge
and insights.
Designs have comprehensible design documentation.
Designs can be more far more modular — less need for multiple functionality
and high inter-dependency of sub-systems than found in evolved systems.
e Systems can have a more flow-chart like, logical design — evolution has no
foresight.
e They can be designed with debugging aids — evolution didn’t need that.
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e These features combine to make systems easier to understand, debug, in-
terface, and — importantly — for multiple teams to simultaneously work on
the design.

Conceptual design versus reverse-engineering

In addition to avoiding the shortcomings of evolutionary techniques, there
are also numerous advantages to designing and engineering intelligent systems
based on functional requirements rather than trying to copy evolution’s design
of the brain. As aviation has amply demonstrated, it is much easier to build
planes than it is to reverse-engineer birds — much easier to achieve flight via
thrust than flapping wings.

Similarly, in creating artificial intelligence it makes sense to capitalize on
our human intellectual and engineering strengths — to ignore design param-
eters unique to biological systems, instead of struggling to copy nature’s de-
signs. Designs explicitly engineered to achieve desired functionality are much
easier to understand, debug, modify, and enhance. Furthermore, using known
and existing technology allows us to best leverage existing resources. So why
limit ourselves to the single solution to intelligence created by a blind, uncon-
scious Watchmaker with his own agenda (survival in an evolutionary environ-
ment very different from that of today)?

Intelligent machines designed from scratch carry neither the evolutionary
baggage, nor the additional complexity for epigenesis, reproduction, and in-
tegrated self-repair of biological brains. Obviously this doesn’t imply that we
can learn nothing from studying brains, just that we don’t have to limit our-
selves to biological feasibility in our designs. Our (currently) only working
example of high-level general intelligence (the brain) provides a crucial con-
ceptual model of cognition, and can clearly inspire numerous specific design
features.

Here are some desirable cognitive features that can be included in an
AGI design that would not (and in some cases, could not) exist in a reverse-
engineered brain:

More effective control of neurochemistry (“emotional states”).

Selecting the appropriate degree of logical thinking versus intuition.

More effective control over focus and attention.

Being able to learn instantly, on demand.

Direct and rapid interfacing with databases, the Internet, and other ma-

chines — potentially having instant access to all available knowledge.

Optional “photographic” memory and recall (“playback”) on all senses!

Better control over remembering and forgetting (freezing important knowl-

edge, and being able to unlearn.)

e The ability to accurately backtrack and review thought and decision pro-
cesses (retrace and explore logic pathways.)

e Patterns, nodes and links can easily be tagged (labeled) and categorized.
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The ability to optimize the design for the available hardware instead of
being forced to conform to the brain’s requirements.

The ability to utilize the best existing algorithms and software techniques
— irrespective of whether they are biologically plausible.

Custom designed AGI (unlike brains) can have a simple speed/capacity
upgrade path.

The possibility of comprehensive integration with other AI systems (like
expert systems, robotics, specialized sense pre-processors, and problem
solvers.)

The ability to construct AGIs that are highly optimized for specific do-
mains.

Node, link, and internal parameter data is available as “input data” (full
introspection.)

Design specifications are available (to the designer and to the AGI itself!)
Seed AI design: A machine can inherently be designed to more easily un-
derstand and improve its own functioning — thus bootstrapping intelligence
to ever higher levels.

General proof-of-concept versus specific real applications development

Applying given resources to minimalist proof-of-concept designs improves the
likelihood of cutting a swift, direct path towards an ultimate goal. Having
identified high-level artificial general intelligence as our goal, it makes little
sense to squander resources on inessentials. In addition to focusing our efforts
on the ability to acquire knowledge autonomously, rather than capturing or
coding it, we further aim to speed progress towards full AGI by reducing cost
and complexity through:

Concentrating on proof-of-concept prototypes, not commercial perfor-
mance. This includes working at low data resolution and volume, and
putting aside optimization. Scalability is addressed only at a theoretical
level, and not necessarily implemented.

Working with radically-reduced sense and motor capabilities. The fact
that deaf, blind, and severely paralyzed people can attain high intelligence
(Helen Keller, Stephen Hawking) indicates that these are not essential to
developing AGI.

Coping with complexity through a willingness to experiment and imple-
ment poorly understood algorithms — i.e. using an engineering approach.
Using self-tuning feedback loops to minimize free parameters.

Not being sidetracked by attempting to match the performance of domain-
specific designs — focusing more on how capabilities are achieved (e.g.
learned conceptualization, instead of programmed or manually specified
concepts) rather than raw performance.

Developing and testing in virtual environments, not physical implementa-
tions. Most aspects of AGI can be fully evaluated without the overhead
(time, money, and complexity) of robotics.
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Animal level cognition versus abstract thought, language, and formal logic

There is ample evidence that achieving high-level cognition requires only mod-
est structural improvements from animal capability. Discoveries in cognitive
psychology point towards generalized pattern processing being the founda-
tional mechanism for all higher level functioning. On the other hand, relatively
small differences between higher animals and humans are also witnessed by
studies of genetics, the evolutionary timetable, and developmental psychology.

The core challenge of AGI is achieving the robust, adaptive conceptual
learning ability of higher primates or young children. If human level intelli-
gence is the goal, then pursuing robotics, language, or formal logic (at this
stage) is a costly sideshow — whether motivated by misunderstanding the
problem, or by commercial or “political” considerations.

Summary

While our project leans heavily on research done in many specialized disci-
plines, it is one of the few efforts dedicated to integrating such interdisciplinary
knowledge with the specific goal of developing general artificial intelligence.
We firmly believe that many of the issues raised above are crucial to the early
achievement of truly intelligent adaptive learning systems.

4 Foundational Cognitive Capabilities

General intelligence requires a number of foundational cognitive abilities. At
a first approximation, it must be able to:

remember and recognize patterns representing coherent features of reality;
relate such patterns by various similarities, differences, and associations;
learn and perform a variety of actions;

evaluate and encode feedback from a goal system;

autonomously adjust its system control parameters;

As mentioned earlier, this functionality must handle a very wide variety of
data types and characteristics (including temporal), and must operate interac-
tively, in real-time. The expanded description below is based on our particular
implementation; however, the features listed would generally be required (in
some form) in any implementation of artificial general intelligence.

Pattern learning, matching, completion, and recall

The primary method of pattern acquisition consists of a proprietary adap-
tation of lazy learning [1, 28]. Our implementation stores feature patterns
(static and dynamic) with adaptive fuzzy tolerances that subsequently deter-
mine how similar patterns are processed. Our recognition algorithm matches
patterns on a competitive winner-take-all basis, as a set or aggregate of sim-
ilar patterns, or by forced choice. It also offers inherent support for pattern
completion, and recall (where appropriate).
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Data accumulation and forgetting

Because our system learns patterns incrementally, mechanism are needed for
consolidating and pruning excess data. Sensed patterns (or sub-patterns) that
fall within a dynamically set noise/error tolerance of existing ones are auto-
matically consolidated by a hebbian-like mechanism that we call “nudging.”
This algorithm also accumulates certain statistical information. On the other
hand, patterns that turn out not to be important (as judged by various crite-
ria) are deleted.

Categorization and clustering

Vector-coded feature patterns are acquired in real-time and stored in a highly
adaptive network structure. This central self-organizing repository automat-
ically clusters data in hyper-dimensional vector- space. Our matching algo-
rithm’s ability to recall patterns by any dimension provides inherent support
for flexible, dynamic categorization. Additional categorization mechanisms fa-
cilitate grouping patterns by additional parameters, associations, or functions.

Pattern hierarchies and associations

Patterns of perceptual features do not stand in isolation — they are derived
from coherent external reality. Encoding relationships between patterns serves
the crucial functions of added meaning, context, and anticipation. Our system
captures low-level, perception-driven pattern associations such as: sequential
or coincidental in time, nearby in space, related by feature group or sense
modality. Additional relationships are encoded at higher levels of the net-
work, including actuation layers. This overall structure somewhat resembles
the “dual network” described by [11].

Pattern priming and activation spreading

The core function of association links is to prime?* related nodes. This helps
to disambiguate pattern matching, and to select contextual alternatives. In
the case where activation is particularly strong and perceptual activity is low,
stored patterns will be “recognized” spontaneously. Both the scope and decay
rate of such activation spreading are controlled adaptively. These dynamics
combine with the primary, perception-driven activation to form the system’s
short-term memory.

Action patterns

Adaptive action circuits are used to control parameters in the following three
domains:

4“pPriming,” as used in psychology, refers to an increase in the speed or accuracy
of a decision that occurs as a consequence of prior exposure or activation.
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1. senses, including adjustable feature extractors, focus and selection mech-
anisms;

2. output actuators for navigation and manipulation;

3. meta-cognition and internal controls;

Different actions states and behaviors (action sequences) for each of these
control outputs can be created at design time (using a configuration script) or
acquired interactively. Real-time learning occurs either by means of explicit
teaching, or autonomously through random exploration. Once acquired, these
actions can be tied to specific perceptual stimuli or whole contexts through
various stimulus-response mechanisms. These S-R links (both activation and
inhibition) are dynamically modified through ongoing reinforcement learning.

Meta-cognitive control

In addition to adaptive perception and action functionality, an AGI design
must also allow for extensive monitoring and control of overall system param-
eters and functions (including “emotion-like” cognitive behavioral strategies.)
Any complex interactive learning system contains numerous crucial control
parameters such as noise tolerance, learning and exploration rates, priorities
and goal management, and a myriad others. Not only must the system be able
to adaptively control these many interactive vectors, it must also appropri-
ately manage its various cognitive functions (such as recognition, recall, action,
etc.) and modes (such as exploration, caution, attention, etc.), dynamically
evaluating them for effectiveness. Our design deals with these requirements
by means of a highly adaptive introspection/control “probe”.

High-level intelligence

Our AGI model posits that no additional foundational functions are necessary
for higher- level cognition. Abstract thought, language, and logical thinking
are all elaborations of core abilities. This controversial point is elaborated on
further on.

5 An AGI in the Making

The functional proof-of-concept prototype currently under development at
Adaptive A.L. Inc. aims to embody all the abovementioned choices, require-
ments, and features. Our development path has been the following;:

development framework;

memory core and interface structure;

individual foundational cognitive components;
integrated low-level cognition;

increased level of functionality (our current focus).

Al
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The software comprises an AGI engine framework with the following basic
components:

e a set of pluggable, programmable (virtual) sensors and actuators (called
“probes”);
a central pattern store/engine including all data and cognitive algorithms;
a configurable, dynamic 2D virtual world, plus various training and diag-
nostic tools.

Foundational
Cognitive
Algerithms

i
it
11}
T Data Recorder Data Visualization
H',_) with Playback & Editing Tool
Probes

Fig. 1: Adaptive A.I’s AGI Framework

The AGI engine design is based on, and embodies insights from a wide
range of research in cognitive science — including computer science, neuro-
science, epistemology [26, 17], cognitive science [24, 9] and psychology [20].
Particularly strong influences include: embodied systems [6], vector encoded
representation [7], adaptive self-organizing neural nets (esp. Growing Neural
Gas, [10]), unsupervised and self-supervised learning, perceptual learning [13],
and fuzzy logic [18].

While our design includes several novel, and proprietary algorithms, our
key innovation is the particular selection and integration of established tech-
nologies and prior insights.

5.1 AGI Engine Architecture and Design Features

Our AGI engine (which provides this foundational cognitive ability) can logi-
cally be divided into three parts (See Figure 1):

e Cognitive core;
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e control/interface logic;
e input/output probes.

This “situated agent architecture” reflects the importance of having an
AGI system that can dynamically and adaptively interact with the environ-
ment. From a theory-of-mind perspective it acknowledges both the crucial
need for concept grounding (via senses), plus the absolute need for experien-
tial, self-supervised learning.

The components listed below have been specifically designed with features
required for adaptive general intelligence in (ultimately) real environments.
Among other things, they deal with a great variety and volume of static and
dynamic data, cope with fuzzy and uncertain data and goals, foster coherent
integrated representations of reality, and — most of all — promote adaptivity.

Cognitive Core

This is the central repository of all static and dynamic data patterns — includ-
ing all learned cognitive and behavioral states, associations, and sequences. All
data is stored in a single, integrated node-link structure. The design innovates
the specific encoding of pattern “fuzziness” (in addition to other attributes).
The core allows for several node/link types with differing dynamics to help
define the network’s cognitive structure.

The network’s topology is dynamically self-organizing — a feature inspired
by “Growing Neural Gas” design [10]. This allows network density to adjust
to actual data feature and/or goal requirements. Various adaptive local and
global parameters further define network structure and dynamics in real time.

Control and interface logic

An overall control system coordinates the network’s execution cycle, drives
various cognitive and housekeeping algorithms, and controls/adapts system
parameters. Via an Interface Manager, it also communicates data and control
information to and from the probes.

In addition to handling the “nuts and bolts” of program execution and
communication, and to managing the various cognitive algorithms, the control
system also includes meta-cognitive monitoring and control. This is essentially
the cognitive aspect of emotions; such states as curiosity, boredom, pleasure,
disappointment, etc. [24]

Probes

The Interface Manager provides for dynamic addition and configuration of
probes. Key design features of the probe architecture include the ability to
have programmable feature extractors, variable data resolution, and focus and
selection mechanisms. Such mechanisms for data selection are imperative for
general intelligence: even moderately complex environments have a richness
of data that far exceeds any system’s ability to usefully process.
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The system handles a very wide variety of data types and control signal
requirements — including those for visual, sound, and raw data (e.g., database,
internet, keyboard), as well as various output actuators. A novel “system
probe” provides the system with monitoring and control of its internal states
(a form of meta-cognition). Additional probes — either custom interfaces with
other systems or additional real-world sensors/actuators — can easily be added
to the system.

Development environment, language, and hardware

The complete AGI engine plus associated support programs are implemented
in (Object Oriented) C# under Microsoft’s NET framework. Current tests
show that practical (proof-of-concept) prototype performance can be achieved
on a single, conventional PC (2 Ghz, 512 Meg). Even a non-performance-
tuned implementation can process several complex patterns per second on a
database of hundreds of thousands stored features.

6 From Algorithms to General Intelligence

This section covers some of our near-term research and development; it aims
to illustrate our expected path toward meaningful general intelligence. While
this work barely approaches higher-level animal cognition (exceeding it in
some aspects, but falling far short in others such as sensory-motor skills), we
take it to be a crucial step in proving the validity and practicality of our model.
Furthermore, the actual functionality achieved should be highly competitive, if
not unique, in applications where significant autonomous adaptivity and data
selection, lack of brittleness, dynamic pattern processing, flexible actuation,
and self-supervised learning are central requirements.

General intelligence doesn’t comprise one single, brilliant knock-out inven-
tion or design feature; instead, it emerges from the synergetic integration of
a number of essential fundamental components. On the structural side, the
system must integrate sense inputs, memory, and actuators, while on the func-
tional side various learning, recognition, recall and action capabilities must op-
erate seamlessly on a wide range of static and dynamic patterns. In addition,
these cognitive abilities must be conceptual and contextual — they must be
able to generalize knowledge, and interpret it against different backgrounds.

A key milestone in our project was reached when we started testing the
integrated functionality of the basic cognitive components within our over-
all AGI framework. A number of custom-developed, highly-configurable test
utilities are being used to test the cohesive functioning of the whole system.
At this stage, most of our AGI development/testing is done using our virtual
world environments, driven by custom scripts. This automated training and
evaluation is supplemented by manual experimentation in numerous differ-
ent environments and applications. Experience gained by these tests helps to
refine the complex dynamics of interacting algorithms and parameters.
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One of the general difficulties with AGI development is to determine ab-
solute measures of success. Part of the reason is that this field is still nascent,
and thus no agreed definitions, let alone tests or measures of low-level gen-
eral intelligence exist. As we proceed with our project we expect to develop
ever more effective protocols and metrics for assessing cognitive ability. Our
system’s performance evaluation is guided by this description:

General intelligence comprises the ability to acquire (and adapt) the
knowledge and skills required for achieving a wide range of goals in a
variety of domains.

In this context:

e Acquisition includes all of the following: automatic, via sense inputs (fea-
ture/data driven); explicitly taught; discovered through exploration or ex-
perimentation; internal processes (e.g., association, categorization, statis-
tics, etc.).

Adaptation implies that new knowledge is integrated appropriately.
Knowledge and skills refer to all kinds of data and abilities (states and
behaviors) that the system acquires for the short or long term.

Our initial protocol for evaluating AGIs aims to cover a wide spectrum
of domains and goals by simulating sample applications in 2D virtual worlds.
In particular, these tests should assess the degree to which the foundational
abilities operate as an integrated, mutually supportive whole — and without
programmer intervention! Three examples follow.

6.1 Sample Test Domains for Initial Performance Criteria
Adaptive security monitor

This system scans video monitors and alarm panels that oversee a secure area
(say, factory, office building, etc.), and responds appropriately to abnormal
conditions. Note, this is somewhat similar to a site monitoring application at
MIT [15].

This simulation calls for a visual environment that contains a lot of de-
tail but has only limited dynamic activity — this is its normal state (green).
Two levels of abnormality exist: (i) minor, or known disturbance (yellow); (ii)
major, or unknown disturbance (red).

The system must initially learn the normal state by simple exposure (auto-
matically scanning the environment) at different resolutions (detail). It must
also learn “yellow” conditions by being shown a number of samples (some at
high resolution). All other states must output “red.”

Standard operation is to continuously scan the environment at low resolu-
tion. If any abnormal condition is detected the system must learn to change
to higher resolution in order to discriminate between “yellow” and “red.”

The system must adapt to changes in the environment (and totally differ-
ent environments) by simple exposure training.
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Sight assistant

The system controls a movable “eye” (by voice command) that enables the
identification (by voice output) of at least a hundred different objects in the
world. A trainer will dynamically teach the system new names, associations,
and eye movement commands.

The visual probe can select among different scenes (simulating rooms) and
focus on different parts of each scene. The scenes depict objects of varying
attributes: color, size, shape, various dynamics, etc. (and combinations of
these), against different backgrounds.

Initial training will be to attach simple sound commands to maneuver the
“eye”, and to associate word labels with selected objects. The system must
then reliably execute voice commands and respond with appropriate identi-
fication (if any). Additional functionality could be to have the system scan
the various scenes when idle, and to automatically report selected important
objects.

Object identification must cover a wide spectrum of different attribute
combinations and tolerances. The system must easily learn new scenes, ob-
jects, words and associations, and also adapt to changes in any of these vari-
ables.

Maze explorer

A (virtual) entity explores a moderately complex environment. It discovers
what types of objects aid or hinder its objectives, while learning to navigate
this dynamic world. It can also be trained to perform certain behaviors.

The virtual world is filled with a great number of different objects (see
previous example). In addition, some of these objects move in space at varying
speeds and dynamics, and may be solid and/or immovable. Groups of different
kinds of objects have pre-assigned attributes that indicate negative or positive.
The AGI engine controls the direction and speed of an entity in this virtual
world. Its goal is to learn to navigate around immovable and negative objects
to reliably reach hidden positives.

The system can also be trained to respond to operator commands to per-
form behaviors of varying degrees of complexity (for example, actions similar
to “tricks” one might teach a dog). This “Maze Explorer” can easily be set
up to deal with fairly complex tasks.

6.2 Towards Increased Intelligence

Clearly, the tasks described above do not by themselves represent any kind of
breakthrough in artificial intelligence research. They have been achieved many
times before. However, what we do believe to be significant and unique is the
achievement of these various tasks without any task-specific programming or
parameterization. It is not what is being done, but how it is done.



150 Peter Voss

Development beyond these basic proof-of-concept tests will advance in two
directions: (1) to significantly increase resolution, data volume, and complex-
ity in applications similar to the tests; (2) to add higher-level functionality.
In addition to work aimed at further developing and proving our general in-
telligence model, there are also numerous practical enhancements that can
be done. These would include implementing multi-processor and network ver-
sions, and integrating our system with databases or with other existing Al
technology such as expert systems, voice recognition, robotics, or sense mod-
ules with specialized feature extractors.

By far the most important of these future developments concern higher-
level ability. Here is a partial list of action items, all of which are derived from
lower-level foundations:

spread activation and retain context over extended period;

support more complex internal temporal patterns, both for enhanced
recognition and anticipation, and for cognitive and action sequences;
internal activation feedback for processing without input;

deduction, achieved through selective concept activation;

advanced categorization by arbitrary dimensions;

learning of more complex behavior;

abstract and merged concept formation;

structured language acquisition;

increased awareness and control of internal states (introspection);
Learning logic and other problem-solving methodologies.

7 Other Research

Co-authored with Shane Legg, then at Adaptive A.L, Inc

Many different approaches to Al exist; some of the differences are straight
forward while others are subtle and hinge on difficult philosophical issues. As
such the exact placement of our work relative to that of others is difficult and,
indeed, open to debate. Our view that “intelligence is a property of an entity
that engages in two way interaction with an external environment,” technically
puts us in the area of “agent systems” [27]. However, our emphasis on a
connectionist rather than classical approach to cognitive modeling, places our
work in the field of “embodied cognitive science.” (See [23] for a comprehensive
overview.)

While our approach is similar to other research in embodied cognitive
science, in some respects our goals are substantively different. A key difference
is our belief that a core set of cognitive abilities working together is sufficient to
produce general intelligence. This is in marked contrast to others in embodied
cognitive science who consider intelligence to be necessarily specific to a set
of problems within a given environment. In other words, they believe that
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autonomous agents always exist in ecological niches. As such they focus their
research on building very limited systems that effectively deal with only a
small number of problems within a specific limited environment. Almost all
work in the area follows this — see [4, 6, 3] for just a few well known examples.
Their stance contradicts the fact that humans possess general intelligence; we
are able to effectively deal with a wide range of problems that are significantly
beyond anything that could be called our “ecological niche.”

Perhaps the closest project to ours that is strictly in the area of embodied
cognitive science is the Cog project at MIT [5]. The project aims to under-
stand the dynamics of human interaction by the construction of a human-like
robot complete with upper torso, a head, eyes, arms and hands. While this
project is significantly more ambitious than other projects in terms of the
level and complexity of the system’s dynamics and abilities, the system is still
essentially niche focused (elementary human social and physical interaction)
when compared to our own efforts at general intelligence.

Probably the closest work to ours in the sense that it also aims to achieve
general rather than niche intelligence is the Novamente project under the di-
rection of Ben Goertzel. (The project was formerly known as Webmind, see
[11, 12].) Novamente relies on a hybrid of low-level neural net-like dynamics
for activation spreading and concept priming, coupled with high-level seman-
tic constructs to represent a variety of logical, causal and spatial-temporal
relations. While the semantics of the system’s internal state are relatively
easy to understand compared to a strictly connectionist approach, the classi-
cal elements in the system’s design open the door to many of the fundamental
problems that have plagued classical Al over the last fifty years. For example,
high-level semantics require a complex meta-logic contained in hard coded
high-level reasoning and other high-level cognitive systems. These high-level
systems contain significant implicit semantics that may not be grounded in
environmental interaction but are rather hard coded by the designer — thus
causing symbol grounding problems [16]. The relatively fixed, high-level meth-
ods of knowledge representation and manipulation that this approach entails
are also prone to “frame of reference” [21, 25] and “brittleness” problems. In
a strictly embodied cognitive science approach, as we have taken, all knowl-
edge is derived from agent-environment interaction thus avoiding these long-
standing problems of classical Al.

[8] is another researcher whose model closely resembles our own, but there
are no implementations specifically based on his theoretical work. Igor Alek-
sander’s (now dormant) MAGNUS project [2] also incorporated many key
AGI concepts that we have identified, but it was severely limited by a clas-
sical Al, finite-state machine approach. Valeriy Nenov and Michael Dyer of
UCLA [22] used “massively” parallel hardware (a CM-2 Connection Machine)
to implement a virtual, interactive perceptual design close to our own, but
with a more rigid, pre-programmed structure. Unfortunately, this ambitious,
ground-breaking work has since been abandoned. The project was probably
severely hampered by limited (at the time) hardware.
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Moving further away from embodied cognitive science to purely classical
research in general intelligence, perhaps the best known system is the Cyc
project being pursued by [19]. Essentially Lenat sees general intelligence as
being “common sense.” He hopes to achieve this goal by adding many mil-
lions of facts about the world into a huge database. After many years of work
and millions of dollars in funding there is still a long way to go as the sheer
number of facts that humans know about the world is truly staggering. We
doubt that a very large database of basic facts is enough to give a computer
much general intelligence — the mechanisms for autonomous knowledge acqui-
sition are missing. Being a classical approach to Al this also suffers from the
fundamental problems of classical Al listed above. For example, the symbol
grounding problem arises again: if facts about cats and dogs are just added
to a database that the computer can use even though it has never seen or in-
teracted with an animal, are those concepts really meaningful to the system?
While his project also claims to pursue “general intelligence,” it is really very
different from our own, both in its approach and in the difficulties it faces.

Analysis of Al’s ongoing failure to overcome its long-standing limitations
reveals that it is not so much that Artificial General Intelligence has been tried
and that it has failed, but rather that the field has largely been abandoned —
be it for theoretical, historic, or commercial reasons. Certainly, our particular
type of approach, as detailed in previous sections, is receiving scant attention.

8 Fast-track AGI: Why So Rare?

Widespread application of Al has been hampered by a number of core limi-
tations that have plagued the field since the beginning, namely:

the expense and delay of custom programming individual applications;
systems’ inability to automatically learn from experience, or to be user
teachable/trainable;

e reliability and performance issues caused by “brittleness” (the inability of
systems to automatically adapt to changing requirements, or data outside
of a predefined range);

e their limited intelligence and common sense.

The most direct path to solving these long-standing problems is to con-
ceptually identify the fundamental characteristics common to all high-level
intelligence, and to engineer systems with this basic functionality, in a man-
ner that capitalizes on human and technological strength.

General intelligence is the key to achieving robust autonomous systems
that can learn and adapt to a wide range of uses. It is also the cornerstone
of self-improving, or Seed Al — using basic abilities to bootstrap higher-level
ones. This chapter identified foundational components of general intelligence,
as well as crucial considerations particular to the effective development of the
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artificial variety. It highlighted the fact that very few researchers are actually
following this most direct route to AGI.

If the approach outlined above is so promising, then why is has it received
so little attention? Why is hardly anyone actually working on it?

A short answer: Of all the people working in the field called AI:

e 80% don’t believe in the concept of General Intelligence (but instead, in a
large collection of specific skills and knowledge.)

e Of those that do, 80% don’t believe that artificial, human-level intelligence
is possible — either ever, or for a long, long time.

e Of those that do, 80% work on domain-specific Al projects for commercial
or academic-political reasons (results are more immediate).

e Of those left, 80% have a poor conceptual framework...

Even though the above is a caricature, in contains more than a grain of
truth.

A great number of researchers reject the validity or importance of “general
intelligence.” For many, controversies in psychology (such as those stoked
by The Bell Curve) make this an unpopular, if not taboo subject. Others,
conditioned by decades of domain-specific work, simply do not see the benefits
of Seed AI — solving the problems only once.

Of those that do not in principle object to general intelligence, many don’t
believe that AGI is possible — in their life-time, or ever. Some hold this position
because they themselves tried and failed “in their youth.” Others believe that
AGI is not the best approach to achieving “Al” or are at a total loss on how
to go about it. Very few researchers have actually studied the problem from
our (the general intelligence/Seed AI) perspective. Some are actually trying
to reverse-engineer the brain — one function at a time. There are also those
who have moral objections, or who are afraid of it.

Of course, a great many are so focused on particular, narrow aspects of
intelligence that they simply don’t get around to looking at the big picture —
they leave it to others to make it happen. It is also important to note that there
are often strong financial and institutional pressures to pursue specialized Al.

All of the above combine to create a dynamic where Real Al is not “fash-
ionable” — getting little respect, funding, and support — further reducing the
number of people drawn into it!

These should be more than enough reasons to account for the dearth of
AGI progress. But it gets worse. Researchers actually trying to build AGI
systems are further hampered by a myriad of misconceptions, poor choices,
and lack of resources (funding and research). Many of the technical issues
were explored previously (see Sections 3 and 7), but a few others are worth
mentioning:

Epistemology

Models of AGI can only be as good as their underlying theory of knowl-
edge — the nature of knowledge, and how it relates to reality. The realization
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that high-level intelligence is based on conceptual representation of reality
underpins design decisions such as adaptive, fuzzy vector encoding, and an
interactive, embodied approach. Other consequences are the need for sense-
based focus and selection, and contextual activation. The central importance
of a highly-integrated pattern network — especially including dynamic ones
— becomes obvious on understanding the relationship between entities, at-
tributes, concepts, actions, and thoughts. These and several other insights
lay the foundation for solving problems related to grounding, brittleness, and
common sense. Finally, there is still a lot of unnecessary confusion about
the relationship between concepts and symbols. A dynamic that continues to
handicap Al is the lingering schism between traditionalists and connection-
ists. This unfortunately helps to perpetuate a false dichotomy between explicit
symbols/schema and incomprehensible patterns.

Theory of mind

Another concern is sloppy formulation and poor understanding of several key
concepts: consciousness, intelligence, volition, meaning, emotions, common
sense, and “qualia.” The fact that hundreds of AI researchers attend con-
ferences every year where key speakers proclaim that “we don’t understand
consciousness (or qualia, or whatever), and will probably never understand
it” indicates just how pervasive this problem is. Marvin Minsky’s characteri-
zation of consciousness being a “suitcase word”® is correct. Let’s just unpack
it!

Errors like these are often behind research going off at a tangent relative
to stated long-term goals. Two examples are an undue emphasis on biological
feasibility, and the belief that embodied intelligence cannot be virtual, that it
has to be implemented in physical robots.

Cognitive psychology

It goes without saying that a proper understanding of the concept “intelli-
gence” is key to engineering it. In addition to epistemology, several areas of
cognitive psychology are crucial to unraveling its meaning. Misunderstanding
intelligence has led to some costly disappointments, such as manually accu-
mulating huge amounts of largely useless data (knowledge without meaning),
efforts to achieve intelligence by combining masses of dumb agents, or trying
to obtain meaningful conversation from an isolated network of symbols.

Project focus

The few projects that do pursue AGI based on relatively sound models run
yet another risk: they can easily lose focus. Sometimes commercial considera-
tions hijack a project’s direction, while others get sidetracked by (relatively)

5Meaning that many different meanings are thrown together in a jumble — or at
least packaged together in one “box,” under one label.
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irrelevant technical issues, such as trying to match an unrealistically high level
of performance, fixating on biological feasibility of design, or attempting to
implement high-level functions before their time. A clearly mapped-out devel-
opmental path to human-level intelligence can serve as a powerful antidote to
losing sight of “the big picture.” A vision of how to get from “here” to “there”
also helps to maintain motivation in such a difficult endeavor.

Research support

AGI utilizes, or more precisely, is an integration of a large number of exist-
ing AI technologies. Unfortunately, many of the most crucial areas are sadly
under-researched. They include:

e incremental, real-time, unsupervised/self-supervised learning (vs. back-
propagation);
integrated support for temporal patterns;
dynamically-adaptive neural network topologies;
self-tuning of system parameters, integrating bottom-up (data driven) and
top-down (goal/meta-cognition driven) auto-adaptation;

e sense probes with auto-adaptive feature extractors.

Naturally, these very limitations feed back to reduce support for AGI re-
search.

Cost and difficulty

Achieving high-level AGI will be hard. However, it will not be nearly as dif-
ficult as most experts think. A key element of “Real AI” theory (and its
implementation) is to concentrate on the essentials of intelligence. Seed Al
becomes a manageable problem — in some respects much simpler than other
mainstream Al goals - by eliminating huge areas of difficult, but inessential
AT complexity. Once we get the crucial fundamental functionality working,
much of the additional “intelligence” (ability) required is taught or learned,
not programmed. Having said this, I do believe that very substantial resources
will be required to scale up the system to human-level storage and process-
ing capacity. However, the far more moderate initial prototypes will serve as
proof-of-concept for AGI while potentially seeding a large number of practical
new applications.

9 Conclusion

Understanding general intelligence and identifying its essential components
are key to building next-generation Al systems — systems that are far less
expensive, yet significantly more capable. In addition to concentrating on
general learning abilities, a fast-track approach should also seek a path of least
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resistance — one that capitalizes on human engineering strengths and available
technology. Sometimes, this involves selecting the Al road less traveled.

I believe that the theoretical model, cognitive components, and framework
described above, joined with my other strategic design decisions provide a solid
basis for achieving practical AGI capabilities in the foreseeable future. Suc-
cessful implementation will significantly address many traditional problems of
Al Potential benefits include:

e minimizing initial environment-specific programming (through self-adaptive
configuration);

e substantially reducing ongoing software changes, because a large amount
of additional functionality and knowledge will be acquired autonomously
via self-supervised learning;

e greatly increasing the scope of applications, as users teach and train addi-
tional capabilities; and

e improved flexibility and robustness resulting from systems’ ability to adapt
to changing data patterns, environments and goals.

AGI promises to make an important contribution toward realizing software
and robotic systems that are more usable, intelligent, and human-friendly.
The time seems ripe for a major initiative down this new path of human
advancement that is now open to us.
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Summary. This chapter introduces the idea of “Evolvable Hardware,” which ap-
plies evolutionary algorithms to the generation of programmable hardware as a
means of achieving Artificial Intelligence. Cellular Automata-based Neural Networks
are evolved in different modules, which form the components of artificial brains. Re-
sults from past models and plans for future work are presented.

1 Introduction

It is appropriate, in these early years of the new millennium, that a radical new
technology makes its debut that will allow humanity to build artificial brains,
an enterprise that may define and color the twenty-first century. This technol-
ogy is called “Evolvable Hardware” (or just “E-Hard” for short). Evolvable
hardware applies genetic algorithms (simulated Darwinian evolution) to the
generation of programmable logic devices (PLDs, programmable hardware),
allowing electronic circuits to be evolved at electronic speeds and at complex-
ity levels that are beyond the intellectual design limits of human electronic
engineers. Tens of thousands (and higher magnitudes) of such evolved circuits
can be combined to form humanly specified artificial brain architectures.

In the late 1980s, the author began playing with genetic algorithms and
their application to the evolution of neural networks. A genetic algorithm
simulates the evolution of a system using a Darwinian “survival of the fittest”
strategy. There are many variations of genetic (evolutionary) algorithms. One
of the simplest uses a population of bit strings (a string of Os and 1s) called
“chromosomes” (analogous to molecular biology) to code for solutions to a
problem. Each bit string chromosome can be decoded and applied to the
problem at hand. The quality of the solution specified by the chromosome is
measured and given a numerical score, called its “fitness”. Each member of the
population of competing chromosomes is ranked according to its fitness. Low
scoring chromosomes are eliminated. High scoring chromosomes have copies
made of them (their “children” in the next “generation”).

Hence only the fittest survive. Random changes are made to the children,
called “mutations.” In most cases, mutations cause the fitness of a mutated
chromosome to decrease, but occasionally, the fitness increases, making the
child chromosome fitter than its parent (or parents, if two parents combine
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bits “sexually” to produce the child’s chromosome). This fitter child chromo-
some will eventually force its less fit parents out of the population in future
generations, until it in turn is forced out by its fitter offspring or the fitter
offspring of other parents. After hundreds of generations of this “test, select,
copy, mutate” cycle, systems can be evolved quite successfully that perform
according to the desired fitness specification.

Neural networks are interconnected nets of simulated brain cells. An indi-
vidual simulated brain cell (neuron) receives signals from neighboring neurons,
which it “weights” by multiplying the incoming signal strength S; by a nu-
merical weighting factor W;, to form the product S;W;. The sum of all the
incoming weighted signals is formed and compared to the neuron’s numerical
threshold value T'. If the sum has a value greater than 7', then the neuron
will “fire” an output signal whose strength depends on how much greater the
sum is than the threshold T. The output signal travels down the neuron’s
outward branching pathway called an “axon.” The branching axon connects
and transmits it signal to other branching pathways called “dendrites” which
transmit the signal to other neurons. By adjusting the weighting factors and
by connecting up the network in appropriate ways, neural networks can be
built which map input signals to output signals in desired ways.

The first attempts to wed genetic algorithms (GAs) to neural nets (NNs)
restricted themselves to static (constant valued) inputs and outputs (no dy-
namics). This restriction struck the author as being unwarranted, so he began
experimenting with dynamic inputs and outputs. The first successful attempt
in this regard managed to get a pair of stick legs to walk, the first evolved, neu-
ral net controlled, dynamic behavior. If one can evolve one behavior, one can
evolve many, so it became conceivable to imagine a whole library of evolved be-
haviors, for example, to get a software simulated quadruped to walk straight,
to turn left, to turn right, to peck at food, to mate, etc, with one separately
evolved neural net circuit or module per behavior. Behaviors could be switched
smoothly by feeding in the outputs of the module generating the earlier be-
havior to the inputs of the module generating the later behavior.

By evolving modules that could detect signals coming from the environ-
ment, e.g. signal strength detectors, frequency detectors, motion detectors
etc, then behaviors could be changed at appropriate moments. The simulated
quadruped (“Lizzy”) could begin to show signs of intelligence, due to pos-
sessing an artificial nervous system of growing sophistication. The idea began
to emerge in the author’s mind that it might be possible to build artificial
brains, if only somehow one could put large numbers of evolved modules to-
gether to function as an integrated whole. The author began to dream of
building artificial brains.

However there was a problem with the above approach. Every time a
new (evolved neural net) module was added to the simulation (on a Mac 2
computer) in the early 1990s, the overall simulation speed slowed, until it was
no longer practical to have more than a dozen modules. Somehow the whole
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process needed to be speeded up, which led to the dream of doing it all in
hardware, at hardware speeds.

2 Evolvable Hardware

A visit to an electronic engineering colleague at George Mason University
(GMU) in Virginia USA, in the summer of 1992, led the author to hear about
FPGAs (Field Programmable Gate Arrays) for the first time. An FPGA is an
array (a matrix) of electronic logic blocks, whose Boolean (and, or, not) func-
tions, inter-block and I/O connections can be programmed, or “configured”
(to use the technical term) by individual users, so if a logic designer makes
a mistake, it can be quickly and easily corrected by reprogramming. FPGAs
are very popular with electronic engineers today. Some FPGAs are S-RAM
(Static RAM) based, and can therefore be reprogrammed an unlimited number
of times. If the FPGA can also accept random configuring bit strings, then
it becomes a suitable device for evolution. This epiphany made the author
very excited in 1992, because he realized that it might be possible to evolve
electronic neural circuits at electronic speeds and hence overcome his problem
of slow evolution and execution speeds in software on a personal computer.
The author began preaching the gospel of “evolvable hardware” as he called
it, to his colleagues in the field of ‘evolutionary computation (EC), which al-
ternatively might be relabeled “evolvable software,” or “E-Soft.” Slowly, the
idea caught on, so that by the year 2002, there had been a string of world
conferences, and academic journals devoted to the topic started to appear.
In the latter half of the 1990s the E-Hard field was stimulated by the pres-
ence of a particular evolvable chip family manufactured by a Silicon Valley,
California company called Xilinx, labeled the XC6200 series. This family of
chips (with a different number of logic blocks per chip type) had several ad-
vantages over other reconfigurable chip families. The architecture of the chip
was public knowledge (not a company secret) thus allowing researchers to
play with it. It could accept random configuring bit strings without blowing
up (important for evolution which uses random bit strings), and thirdly and
very importantly, it was partially reconfigurable at a very fine grained level,
meaning that if one mutated only a few bits in a long configuring bit string,
only the corresponding components of the circuit were changed (reconfigured),
without having to reconfigure the whole circuit again. This third feature al-
lowed for rapid reconfiguration, which made the chip the favorite amongst
E-Harders. Unfortunately, Xilinx stopped manufacturing the XC6200 series
and is concentrating on its new multi-mega gate chip family called “Virtex,”
but the Virtex chips are less fine-grainedly reconfigurable than the XC6200
family, so E-Harders are feeling a bit out in the cold. Hopefully, Xilinx and
similar manufacturers will see the light and make future generations of their
chips more “evolvable,” by possessing a higher degree of fine-grained recon-
figurability. As will be seen below, the author chose a Xilinx chip XC6264 as
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the basis for his work on building an artificial brain (before supplies ran out).
The underlying methodology of this work is based on “evolvable hardware.”

2.1 Neural Network Models

Before discussing the evolution of a neural model in hardware at hardware
speeds, one first needs to know what the neural model is. For years, the author
had a vague notion of being able to put millions of artificial neurons into
gigabytes of RAM and running that huge space as an artificial brain. RAM
memory is fairly cheap, so it seemed reasonable to somehow embed neural
networks, large numbers of them, into RAM, but how? The solution the author
chose was to use cellular automata (CAs). Two dimensional (2D) CAs can
be envisioned as a multicolored chessboard, all of whose squares can change
their color at the tick of a clock according to certain rules. These cellular
automata color (or state) change rules take the following form. Concentrate
on a particular square, which has the color orange, let’s say. Look at its four
neighboring square colors. If the upper square is red, and the right hand square
is yellow, and the bottom square is blue, and the left hand square is green,
then at the next clock tick, the central orange square will become brown. This
rule can be expressed succinctly in the form:

IF (C = orange) A (U = red)\
(R = yellow) A (B = blue) A (L = green)
THEN (C = brown)

or even more succinctly, in the form:

orange.red.yellow.blue.green = brown

Using thousands of such rules, it was possible to make CAs behave as
neural networks, which grew, signaled and evolved (see Figs. 1 and 2). Some
early experiments showed that these circuits could be evolved to perform
such tasks as generating an output signal that oscillated at an arbitrarily
chosen frequency, that generated a maximum number of synapses in a given
volume, etc. However, the large number of rules to make this CA based neural
network function was a problem. The 2D version took 11,000 rules. The 3D
version took over 60,000 rules. There was no way that such large numbers
could be implemented directly in electronics, evolving at electronic speeds.
An alternative model was needed which had very few rules, so few that they
could be implemented directly into FPGAs, thus enabling the field of brain
building by evolving neural net circuits in seconds rather than days as is often
the case using software evolution methods.

The simplified model will be described in more detail, since it is the model
actually implemented in the evolvable hardware. It is a 3D model, again based
on cellular automata, but much simpler. A neuron is modeled by a single 3D
CA cell. The CA trails (the axons and dendrites) are only 1 cell wide, instead of
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Fig. 1: Older complex model of cellular automata based neural network, early
growth

the 3 cell wide earlier model. The growth instructions are distributed through-
out the 3D CA space initially (see Fig. 3) instead of being passed through the
CA trails (as in Figs. 1 and 2). The neural signaling in the newer model is 1
bit only, compared to the 8 bit signals in the earlier model. Such restrictions
will lower the evolvability of the circuits, but in practice, one finds that the
evolvabilities are still adequate for most purposes. In the growth phase, the
first thing done is to position the neurons. For each possible position in the
space where a neuron can be placed, a corresponding bit in the chromosome
is used. If that bit is a 1, then a neuron is placed at that position. If the bit
is a 0, then no neuron is placed at that position.

Every 3D CA cell is given 6 growth bits from the chromosome, one bit
per cubic face. At the first tick of the growth clock, each neuron checks the
bit at each of its 6 faces. If a bit is a 1, the neighboring blank cell touching
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Fig. 2: Older complex model of cellular automata based neural network, saturated
growth

the corresponding face of the neuron is made an axon cell. If the bit is a 0,
then the neighboring blank cell is made a dendrite cell. Thus a neuron can
grow maximum 6 axons or 6 dendrites, and all combinations in between. At
the next clock tick, each blank cell looks at the bit of the face of the filled
neighbor that touches it. If that filled cell face bit is a 1, then the blank cell
becomes the cell type (axon or dendrite) of the touching filled neighbor. The
blank cell also sets a pointer towards its parent cell — for example, if the parent
cell lies to the west of the blank cell, the blank cell sets an internal pointer
which says “west.” These “parent pointers (PPs)” are used during the neural
signaling phase to tell the 1-bit signals which way to move as they travel along
axons and dendrites.
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Fig. 3: Newer simpler model of cellular automata based neural network, saturated
growth

This cellular growth process continues at each clock tick for several hun-
dred ticks until the arborization of the axons and dendrites is saturated in
the 3D space. In the hardware implementation of this simplified model, the
CA space consists of a 24*24*24 cube (the “macro cube”) of 3D CA cells, i.e.
roughly 14,000 of them. At the 6 faces of the macro cube, axon and dendrite
growths wrap around to the opposite macro face, thus forming a “toroidal”
(doughnut) shape. There are prespecified input and output points (188 maxi-
mum input points, and 4 maximum output points, although in practice usually
only one output point is used, to foster evolvability). The user specifies which
input and output points are to be used for a given module. At an input point,
an axon cell is set which grows into the space. Similarly for an output point,
where a dendrite cell is set.

In the signaling phase, the 1 bit neural signals move in the same direction in
which axon growth occurred, and in the opposite direction in which dendrite
growth occurred. Put another way, the signal follows the direction of the
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parent pointers (PPs) if it is moving in a dendrite, and follows in any direction
other than that of the parent pointers (PPs) if it is moving in an axon.

An input signal coming from another neuron or the outside world travels
down the axon until the axon collides with a dendrite. The collision point is
called a “synapse.” The signal transfers to the dendrite and moves toward the
dendrite’s neuron. Each face of the neuron cube is genetically assigned a sign
bit. If this bit is a 1, the signal will add 1 to the neuron’s 4-bit counter value.
If the bit is a 0, the signal will subtract 1 from the neuron’s counter. If the
counter value exceeds a threshold value, usually 2, it resets to zero, and the
neuron “fires,” sending a 1-bit signal to its axons at the next clock tick.

3 The CAM-Brain Machine (CBM)

The evolvable hardware device that implements the above neural net model
is a Cellular Automata Machine (CAM), which is called a CAM-Brain Ma-
chine (CBM). The term CAM-Brain implies that an artificial brain is to be
embedded inside cellular automata. The CBM is a piece of special hardware
that evolves neural circuits very quickly. It consists largely of Xilinx’s (pro-
grammable hardware) XC6264 chips (72 of them), which together can evolve a
neural network circuit module in a few seconds. The CBM executes a genetic
algorithm on the evolving neural circuits, using a population of 100 or so of
them, and running through several hundred generations, i.e. tens of thousands
of circuit growths and fitness measurements. Once a circuit has been evolved
successfully, it is downloaded into a gigabyte of RAM memory. This process
occurs up to 64000 times, resulting in 64000 downloaded circuit modules in
the RAM. A team of Brain Architects (BAs) has already decided which mod-
ules are to be evolved, what their individual functions are, and how they are
to interconnect. Once all the modules are evolved and their interconnections
specified, the CBM then functions in a second mode. It updates the RAM
memory containing the artificial brain at a rate of 130 billion 3D cellular au-
tomata cell updates a second. This is fast enough for real time control of a
kitten robot “Robokitty,” described below.
The CBM consists of 6 main components or units described briefly here.

Cellular Automata Unit: The Cellular Automata Unit contains the cellu-
lar automata cells in which the neurons grow their axons and dendrites,
and transmit their signals.

Genotype/Phenotype Memory Unit: The Genotype/Phenotype Mem-
ory Unit contains the 100K bit chromosomes that determine the growth
of the neural circuits. The Phenotype Memory Unit stores the state of the
CA cells (blank, neuron, axon, dendrite).

Fitness Evaluation Unit: The Fitness Evaluation Unit saves the output
bits, converts them to an analog form and then evaluates how closely the
target and the actual outputs match.
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Genetic Algorithm Unit: The Genetic Algorithm Unit performs the GA
on the population of competing neural circuits, eliminating the weaker
circuits and reproducing and mutating the stronger circuits.

Module Interconnection Memory Unit: The Module Interconnection
Memory Unit stores the BA’s (brain architect’s) inter-module connection
specifications, for example, “the 2nd output of module 3102 connects to
the 134th input of module 63195.”

External Interface Unit: The External Interface Unit controls the in-
put/output of signals from/to the external world, e.g. sensors, camera
eyes, microphone ears, motors, antenna I/0, etc.

The CBM’s shape and color is symbolic (see Figs. 4, 5). The curved outer
layer represents a slice of human cortex. The gray portion that contains the
electronic boards represents the “gray matter” (neural bodies) of the brain,
and the white portion which contains the power supply, represents the “white
matter” (axons) of the brain.

The first CBM and its supporting software packages were implemented in
1999, and actual research use of the machine began in that year. The results
of this testing and the experience gained in using the CBM to design artificial
brain architectures, should form the contents of future articles, with such titles
as “Artificial Brain Architectures.”

3.1 Evolved Modules

Since the neural signals in the model implemented by the CBM use single
bits, the inputs and outputs to a neural module also need to be in a 1-bit
signal form. Table 1 shows a target (desired) output binary string, and the
best evolved (software simulated) result, showing that the evolution of such
binary strings is possible using the CBM implemented model. To increase the
usefulness of the CBM, algorithms were created which converted an arbitrary
analog curve into its corresponding bit string (series of 1s and 0s) and vice
versa, thus allowing users to think entirely in analog terms. Analog inputs are
converted automatically into binary and input to the module. Similarly the
binary output is converted to analog and compared to analog target curves.
Figure 6 shows a random analog target curve and the best evolved curve. Note
that the evolved curve followed the target curve fairly well only for a limited
amount of time, illustrating the “module’s evolvable capacity” (MEC). To
generate analog target curves of unlimited time lengths (needed to generate
the behaviors of the kitten robot over extended periods of time) multi module
systems may need to be designed which use a form of time slicing, with one
module generating one time slice’s target output.



168 Hugo de Garis

Fig. 4: CAM-Brain Machine (CBM) with cover

Binary Target Output and Best Binary Evolved Output

Target 00000000000000000000000000000011111111111111111111

Evolved 00000000000000000000000000000000011111111111111111
Target ct 000000000000000000000000111111111111111100000000000000000000
Evolved ct 100000000000000000000000011111111111111110000000000000000000

We have software simulated the evolution of many modules (for exam-
ple, 2D static and dynamic pattern detectors, motion controllers, decision
modules, etc). Experience shows us that their “evolvability” is usually high
enough to generate enthusiasm. For EEs (evolutionary engineers) the concept
of evolvability is critical.

3.2 The Kitten Robot “Robokitty”

In 1993, the year the CAM-Brain Project started, the idea that an artificial
brain could be built containing a billion neurons in an era in which most
neural nets contained tens to hundreds of neurons seemed ludicrous. Early
skepticism was strong. A means was needed to show that an artificial brain is
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Fig. 5: CAM-Brain Machine (CBM) showing slots for 72 FPGA circuit boards
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Fig. 6: Analog target output and best analog evolved output
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a valid concept to silence the critics. The author chose to have the artificial
brain control hundreds of behaviors of a cute life-sized robot kitten whose
mechanical design is shown in Fig. 7. This robot kitten “Robokitty” will have
some 23 motors, and will send and receive radio signals to and from the CBM
via antenna. The behaviors of the kitten are evolved in commercial “Working
Model 3D” software (from MSC Working Knowledge, Inc.) and the results
then used as target wave forms for the evolution of the control modules in the
CBM.

The evolution of motions in software at software speeds goes against the
grain of the philosophy of evolvable hardware, but was felt to be unavoidable
for practical reasons. Fortunately, the vast majority of modules will be evolved
at electronic speeds. Judging by its many behaviors and the “intelligence” of
its sensory and decision systems, it should be obvious to a casual observer
that “it has a brain behind it,” making the robot behave in as “kitten like” a
manner as possible.

Fig. 7: Mechanical design of robot kitten “Robokitty”
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4 Short- and Long-Term Future

The immediate goal once the first CBMs were built, was to use a CBM to
create the artificial brain’s modular architecture to control the robokitten.
The very concreteness of the task, i.e. getting the kitten to execute its many
hundreds of behaviors and decide when to switch between them based on
decisions coming from its sensory systems and internal states, would require
a major effort, since 64000 modules needed to be evolved. Of course, once
work on the CBM had began, initial efforts were with single modules, to see
what the CBM could evolve. Unfortunately, this work had only just begun
in 2000 when the bankruptcy of the author’s previous lab (Starlab) occurred
and stopped such work in its tracks.

It was planned that once experience with single module evolution had
been gained, interconnected multi-module systems would be built, with 10s,
100s, 1000s, 10,000s of modules, up to the limit of 64000 modules. If this job
was to be completed in two years, assuming that it would take on average
30 minutes for an evolutionary engineer (EE) to dream up the function and
fitness measure of a module, then a design team of 16 people would be needed.

A million-module, second generation artificial brain will require roughly
250 EEs. Thus the problem of building such a large artificial brain would not
only be conceptual, but managerial as well. The author envisages that within
five to ten years, if the first generation brain is a success, it is likely that large
national organizations devoted to brain building will be created, comparable
to the way Goddard’s rockets went from two meter toys controlled by one
man to NASA, with tens of thousands of engineers and a budget of billions
of dollars.

Such national scale brain building projects have been given labels, such as
the A-Brain Project, (America’s National Brain Building Project), E-Brain
Project (Europe’s), C-Brain Project (China’s), J-Brain Project (Japan’s), etc.
Initially, these artificial brains will probably be used to create increasingly
intelligent robotic pets. Later they may be used to control household cleaning
robots, soldier robots, etc. Brain based computing may generate a trillion
dollar world market within 10 years or so. The annual PC market is worth
about a trillion dollars worldwide today.

In the long term, 50 to 100 years from now, the situation becomes far
more alarming. Twenty-first century technologies will allow 1 bit per atom
memory storage, and femtosecond (a thousandth of a trillionth of a second)
switching times (bit flipping). Reversible logic will allow heatless computing,
and the creation of 3D circuitry that does not melt. In theory, asteroid sized,
self-assembling, quantum computers which would have a bit flip rate of 10 to
power 55 a second could be built. The estimated human computing capacity
is a mere 10 to power 16 bit flips a second, i.e. roughly a trillion trillion
trillion times less. For brain builders with a social conscience, the writing is
on the wall. The author feels that the global politics of our new century will
be dominated by the issue of species dominance.
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Should humanity build godlike “Artilects” (artificial intellects) or not? The
author foresees a major war between two human groups, the “Cosmists,” who
will favor building artilects, for whom such an activity is a science-compatible
religion — the big-picture destiny of the human species — and the “Terrans,”
who will fear that one day, artilects, for whatever reason, may decide to ex-
terminate the human race. For the Terrans, the only way to ensure that such
a risk is never undertaken, is to insist that artilects are never built.

In the limit, to preserve the human species, the Terrans may exterminate
the Cosmists, if the latter threaten to build artilects. With twenty-first century
weaponry, and extrapolating up the graph of the number of deaths in major
wars over time, we arrive at “gigadeath.” One of the major tasks of today’s
brain builders is to persuade humanity that such a scenario is not a piece of
dismissible science fiction, but a frightening possibility.

Some brain builders will stop their work due to such worries. Others will
continue, driven by the magnificence of their goal — to build “artilect” gods.
When the nuclear physicists in the 1930s were predicting that a single nuclear
bomb could wipe out a whole city, most people thought they were crazy, but
a mere 12 years after Leo Szilard had the idea of a nuclear chain reaction,
Hiroshima was vaporized.

The decision whether to build artilects or not, will be the toughest that
humanity will have to face in our new century. Humanity will have to choose
between “building gods, or building our potential exterminators.”

5 Postscript — July 2002

This postscript provides a brief update on what has been happening with the
CAM-Brain Project since the above article was written. The author worked
in Japan from 1992 to 1999. In the year 2000 he moved to a private blue-sky
research lab called STARLAB in Brussels, Belgium, Europe. Starlab bought
a CAM-Brain Machine (CBM) that was delivered in the summer of 2000.
Unfortunately, the dotcom crash hit Starlab hard, resulting in its bankruptcy
in June of 2001. Starlab’s CBM was not fully paid for, so the constructor of
this machine, who had internet access to it, switched it off, effectively killing
the project. Four CBMs were built (one in Japan, two in Europe, one in the
USA). Once the designer was no longer paid, he stopped updating the firmware
in all the machines, so effectively all of them are incompletely developed and
do not function as they should.

Since September of 2001, the author has been an associate professor in
the computer science department at Utah State University in the US, with
the responsibility for establishing a Brain Builder Group and obtaining funds
for the creation of a second generation brain building machine called Brain
Building Machine, 2nd Generation (BM2). If funding can be found, this second
generation machine will use the latest generation of programmable/evolvable
chips (namely Xilinx’s “Virtex” family of chips).
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The second time round, however, we are insisting on in-house hardware
design expertise. We don’t want to be dependent upon a commercially mo-
tivated external hardware designer again. This time, all the people involved
in the creation of the BM2 are researchers. The author now has a team of
a dozen people, mostly Masters and PhD students, who are learning how to
program and evolve hardware, using the Xilinx Virtex chips, and to create
increasingly evolvable neural net models which can be implemented in the
evolvable hardware. The author is also collaborating with two other academic
colleagues at different universities across the US, who have had extensive in-
dustrial hardware design experience. The summer vacation of 2002 was spent
devising the architecture of the BM2, with the intention of submitting major
grant proposals to the tune of US$1M for BM2 design and construction.

Perhaps before closing, a brief mention of some of the challenges faced by
the BM2 design can be mentioned here.

The BM2 will have obvious similarities to the CBM. It will still be based on
the basic assumption that individual neural network modules will be evolved
and then hand assembled in RAM to make an artificial brain. This basic as-
sumption in the overall design may, possibly, be changed as the BM2 concep-
tion proceeds, but for the moment it is difficult to imagine how a non-modular
approach might be undertaken. However, the sheer momentum of Moore’s Law
will force us sooner or later to take a different approach, for the simple reason
that it will become humanly impossible to conceive and individually evolve a
million modules. The CBM could handle 75,000,000 neurons and 64,000 mod-
ules. Very probably, the BM2 will be able to handle 1,000,000,000 neurons
and 1,000,000 modules. A million modules is simply too many to handle, thus
necessitating the need to automate the evolution of multi-module systems.
Just how the author’s brain building team will solve such problems has still
to be settled.

On the other hand, Moore’s Law has already given the electronics world
programmable (evolvable) chips with nearly 10,000,000 logic gates. A very
large number of such chips is not needed to build a billion neuron artificial
brain. That is the encouraging aspect of brain building, i.e. knowing that
today’s chip capacities will allow it.

Probably the greatest challenge remains the same as it did for the CBM,
namely architecting the artificial brains themselves. How can hundreds of
motion controllers, thousands of pattern recognizers, etc be put together to
design an artificial brain that will control a (kitten?) robot device with such
variety and intelligence that adults will remain amused by it for half an hour?

The author believes that the planet’s first artificial brains will come into
being within the next few years. If the CBM had not been stopped in its
tracks, there may have been an initial attempt at building such a brain in the
year 2001. Now the BM2 will need to be built for the “Utah Brain Project”
to proceed. Stay tuned.
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Summary. Most traditional artificial intelligence (AI) systems of the past 50 years
are either very limited, or based on heuristics, or both. The new millennium, however,
has brought substantial progress in the field of theoretically optimal and practically
feasible algorithms for prediction, search, inductive inference based on Occam’s ra-
zor, problem solving, decision making, and reinforcement learning in environments
of a very general type. Since inductive inference is at the heart of all inductive sci-
ences, some of the results are relevant not only for Al and computer science but
also for physics, provoking nontraditional predictions based on Zuse’s thesis of the
computer-generated universe.

1 Introduction

Remarkably, there is a theoretically optimal way of making predictions based
on observations, rooted in the early work of Solomonoff and Kolmogorov
[62, 28]. The approach reflects basic principles of Occam’s razor: simple ex-
planations of data are preferable to complex ones.

The theory of universal inductive inference quantifies what simplicity re-
ally means. Given certain very broad computability assumptions, it provides
techniques for making optimally reliable statements about future events, given
the past.

Once there is an optimal, formally describable way of predicting the future,
we should be able to construct a machine that continually computes and
executes action sequences that maximize expected or predicted reward, thus
solving an ancient goal of Al research.

For many decades, however, Al researchers have not paid a lot of atten-
tion to the theory of inductive inference. Why not? There is another reason
besides the fact that most of them have traditionally ignored theoretical com-
puter science: the theory has been perceived as being associated with excessive
computational costs. In fact, its most general statements refer to methods that
are optimal (in a certain asymptotic sense) but incomputable. So researchers
in machine learning and artificial intelligence have often resorted to alternative
methods that lack a strong theoretical foundation but at least seem feasible
in certain limited contexts. For example, since the early attempts at building
a “General Problem Solver” [36, 43] much work has been done to develop
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mostly heuristic machine learning algorithms that solve new problems based
on experience with previous problems. Many pointers to learning by chunk-
ing, learning by macros, hierarchical learning, learning by analogy, etc. can be
found in Mitchell’s book [34] and Kaelbling’s survey [27].

Recent years, however, have brought substantial progress in the field of
computable and feasible variants of optimal algorithms for prediction, search,
inductive inference, problem solving, decision making, and reinforcement
learning in very general environments. In what follows I will focus on the
results obtained at IDSIA.

Sections 3, 4, 7 relate Occam’s razor and the notion of simplicity to the
shortest algorithms for computing computable objects, and will concentrate
on recent asymptotic optimality results for universal learning machines, essen-
tially ignoring issues of practical feasibility — compare Hutter’s contribution
[25] in this volume.

Section 5, however, will focus on our recent non-traditional simplicity mea-
sure which is not based on the shortest but on the fastest way of describing
objects, and Section 6 will use this measure to derive non-traditional predic-
tions concerning the future of our universe.

Sections 8, 9, 10 will finally address quite pragmatic issues and “true” time-
optimality: given a problem and only so much limited computation time, what
is the best way of spending it on evaluating solution candidates? In partic-
ular, Section 9 will outline a bias-optimal way of incrementally solving each
task in a sequence of tasks with quickly verifiable solutions, given a probabil-
ity distribution (the bias) on programs computing solution candidates. Bias
shifts are computed by program prefixes that modify the distribution on their
suffixes by reusing successful code for previous tasks (stored in non-modifiable
memory). No tested program gets more runtime than its probability times the
total search time. In illustrative experiments, ours becomes the first general
system to learn a universal solver for arbitrary n disk Towers of Hanoi tasks
(minimal solution size 2™ — 1). It demonstrates the advantages of incremental
learning by profiting from previously solved, simpler tasks involving samples of
a simple context-free language. Section 10 discusses how to use this approach
for building general reinforcement learners.

Finally, Sect. 11 will summarize the recent Godel machine [56], a self-
referential, theoretically optimal self-improver which explicitly addresses the
“Grand Problem of Artificial Intelligence” [58] by optimally dealing with lim-
ited resources in general reinforcement learning settings.

2 More Formally

What is the optimal way of predicting the future, given the past? Which is the
best way to act such as to maximize one’s future expected reward? Which is
the best way of searching for the solution to a novel problem, making optimal
use of solutions to earlier problems?
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Most previous work on these old and fundamental questions has focused
on very limited settings, such as Markovian environments, where the optimal
next action, given past inputs, depends on the current input only [27].

We will concentrate on a much weaker and therefore much more general
assumption, namely, that the environment’s responses are sampled from a
computable probability distribution. If even this weak assumption were not
true then we could not even formally specify the environment, leave alone
writing reasonable scientific papers about it.

Let us first introduce some notation. B* denotes the set of finite sequences
over the binary alphabet B = {0,1}, B> the set of infinite sequences over
B, X the empty string, and Bf = B* U B®. x,y, z, z', 2% stand for strings in
Bf. If x € B* then xy is the concatenation of x and y (e.g., if x = 10000 and
y = 1111 then xy = 100001111). For = € B*, I(z) denotes the number of bits
in x, where I(z) = oo for x € B*; I(\) = 0. z,, is the prefix of = consisting
of the first n bits, if I(z) > n, and x otherwise (zp := A). log denotes the
logarithm with basis 2, f,g denote functions mapping integers to integers.
We write f(n) = O(g(n)) if there exist positive constants c¢,ng such that
f(n) < cg(n) for all n > ng. For simplicity, let us consider universal Turing
Machines [67] (TMs) with input alphabet B and trinary output alphabet
including the symbols “0”, “1”, and “” (blank). For efficiency reasons, the
TMs should have several work tapes to avoid potential quadratic slowdowns
associated with 1-tape TMs. The remainder of this chapter assumes a fixed
universal reference TM.

Now suppose bitstring = represents the data observed so far. What is its
most likely continuation y € B*? Bayes’ theorem yields

P(x | zy)P(zy)

Play| )= "1

o P(zy), (1)

where P (22 | z!) is the probability of 22, given knowledge of 2!, and P(z) =
fzeBﬁ P(zz)dz is just a normalizing factor. So the most likely continuation y
is determined by P(zy), the prior probability of xy. But which prior measure
P is plausible? Occam’s razor suggests that the “simplest” y should be more
probable. But which exactly is the “correct” definition of simplicity? Sections
3 and 4 will measure the simplicity of a description by its length. Section 5
will measure the simplicity of a description by the time required to compute
the described object.

3 Prediction Using a Universal Algorithmic Prior Based
on the Shortest Way of Describing Objects

Roughly forty years ago Solomonoff started the theory of universal optimal
induction based on the apparently harmless simplicity assumption that P is
computable [62]. While Equation (1) makes predictions of the entire future,
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given the past, Solomonoff [63] focuses just on the next bit in a sequence. Al-
though this provokes surprisingly nontrivial problems associated with trans-
lating the bitwise approach to alphabets other than the binary one — this was
achieved only recently [20] — it is sufficient for obtaining essential insights.
Given an observed bitstring x, Solomonoff assumes the data are drawn accord-
ing to a recursive measure u; that is, there is a program for a universal Turing
machine that reads z € B* and computes p(z) and halts. He estimates the
probability of the next bit (assuming there will be one), using the remarkable,
well-studied, enumerable prior M [62, 77, 63, 15, 31]

M(z) = > 2=lp), (2)

program prefix p computes
output starting with x
M is universal, dominating the less general recursive measures as follows: For
all z € B*,
M(JZ) > C,u,u(x)7 (3)

where ¢, is a constant depending on y but not on x. Solomonoff observed that
the conditional M-probability of a particular continuation, given previous ob-
servations, converges towards the unknown conditional p as the observation
size goes to infinity [63], and that the sum over all observation sizes of the cor-
responding u-expected deviations is actually bounded by a constant. Hutter
(on the author’s SNF research grant “Unification of Universal Induction and
Sequential Decision Theory”) recently showed that the number of prediction
errors made by universal Solomonoff prediction is essentially bounded by the
number of errors made by any other predictor, including the optimal scheme
based on the true u [20].

Recent Loss Bounds for Universal Prediction. This is a more general
recent result. Assume we do know that p is in some set P of distributions.
Choose a fixed weight w, for each ¢ in P such that the w, add up to 1
(for simplicity, let P be countable). Then construct the Bayesmix M (x) =
> . wqq(z), and predict using M instead of the optimal but unknown p. How
wrong is it to do that? The recent work of Hutter provides general and sharp
(1) loss bounds [21].

Let LM (n) and Lp(n) be the total expected unit losses of the M-predictor
and the p-predictor, respectively, for the first n events. Then LM (n) — Lp(n)
is at most of the order of \/Lp(n). That is, M is not much worse than p, and
in general, no other predictor can do better than that! In particular, if p is
deterministic, then the M-predictor soon will not make errors anymore.

If P contains all recursively computable distributions, then M becomes
the celebrated enumerable universal prior. That is, after decades of somewhat
stagnating research we now have sharp loss bounds for Solomonoff’s universal
induction scheme (compare recent work of Merhav and Feder [33]).

Solomonoft’s approach, however, is uncomputable. To obtain a feasible ap-
proach, reduce M to what you get if you, say, just add up weighted estimated
future finance data probabilities generated by 1000 commercial stock-market
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prediction software packages. If only one of the probability distributions hap-
pens to be close to the true one (but you do not know which) you should still
get rich.

Note that the approach is much more general than what is normally done
in traditional statistical learning theory, e.g., [69], where the often quite un-
realistic assumption is that the observations are statistically independent.

4 Super Omegas and Generalizations of Kolmogorov
Complexity & Algorithmic Probability

Our recent research generalized Solomonoft’s approach to the case of less
restrictive nonenumerable universal priors that are still computable in the
limit [50, 52].

An object X is formally describable if a finite amount of information com-
pletely describes X and only X. More to the point, X should be representable
by a possibly infinite bitstring x such that there is a finite, possibly never halt-
ing program p that computes  and nothing but z in a way that modifies each
output bit at most finitely many times; that is, each finite beginning of x
eventually converges and ceases to change. This constructive notion of formal
describability is less restrictive than the traditional notion of computability
[67], mainly because we do not insist on the existence of a halting program
that computes an upper bound of the convergence time of p’s n-th output
bit. Formal describability thus pushes constructivism [5, 1] to the extreme,
barely avoiding the nonconstructivism embodied by even less restrictive con-
cepts of describability (compare computability in the limit [17, 40, 14] and
A% _describability [42][31, p. 46-47]).

The traditional theory of inductive inference focuses on Turing machines
with one-way write-only output tape. This leads to the universal enumerable
Solomonoff-Levin (semi) measure. We introduced more general, nonenumer-
able, but still limit-computable measures and a natural hierarchy of generaliza-
tions of algorithmic probability and Kolmogorov complexity [50, 52], suggest-
ing that the “true” information content of some (possibly infinite) bitstring
x actually is the size of the shortest nonhalting program that converges to x,
and nothing but x, on a Turing machine that can edit its previous outputs.
In fact, this “true” content is often smaller than the traditional Kolmogorov
complexity. We showed that there are Super Omegas computable in the limit
yet more random than Chaitin’s “number of wisdom” Omega [9] (which is
maximally random in a weaker traditional sense), and that any approximable
measure of x is small for any x lacking a short description.

We also showed that there is a universal cumulatively enumerable measure
of = based on the measure of all enumerable y lexicographically greater than
. It is more dominant yet just as limit-computable as Solomonoff’s [52]. That
is, if we are interested in limit-computable universal measures, we should pre-
fer the novel universal cumulatively enumerable measure over the traditional
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enumerable one. If we include in our Bayesmix such limit-computable distri-
butions we obtain again sharp loss bounds for prediction based on the mix
[50, 52].

Our approach highlights differences between countable and uncountable
sets. Which are the potential consequences for physics? We argue that things
such as uncountable time and space and incomputable probabilities actually
should not play a role in explaining the world, for lack of evidence that they
are really necessary [50]. Some may feel tempted to counter this line of reason-
ing by pointing out that for centuries physicists have calculated with continua
of real numbers, most of them incomputable. Even quantum physicists who
are ready to give up the assumption of a continuous universe usually do take
for granted the existence of continuous probability distributions on their dis-
crete universes, and Stephen Hawking explicitly said: “Although there have
been suggestions that space-time may have a discrete structure I see no reason
to abandon the continuum theories that have been so successful.” Note, how-
ever, that all physicists in fact have only manipulated discrete symbols, thus
generating finite, describable proofs of their results derived from enumerable
axioms. That real numbers really ezist in a way transcending the finite sym-
bol strings used by everybody may be a figment of imagination — compare
Brouwer’s constructive mathematics [5, 1] and the Lowenheim-Skolem The-
orem [32, 61] which implies that any first order theory with an uncountable
model such as the real numbers also has a countable model. As Kronecker put
it: “Die ganze Zahl schuf der liebe Gott, alles Ubrige ist Menschenwerk” (“God
created the integers, all else is the work of man” [6]). Kronecker greeted with
scepticism Cantor’s celebrated insight [7] about real numbers, mathematical
objects Kronecker believed did not even exist.

Assuming our future lies among the few (countably many) describable fu-
tures, we can ignore uncountably many nondescribable ones, in particular,
the random ones. Adding the relatively mild assumption that the probabil-
ity distribution from which our universe is drawn is cumulatively enumerable
provides a theoretical justification of the prediction that the most likely con-
tinuations of our universes are computable through short enumeration pro-
cedures. In this sense Occam’s razor is just a natural by-product of a com-
putability assumption! But what about falsifiability? The pseudorandomness
of our universe might be effectively undetectable in principle, because some
approximable and enumerable patterns cannot be proven to be nonrandom in
recursively bounded time.

The next sections, however, will introduce additional plausible assump-
tions that do lead to computable optimal prediction procedures.
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5 Computable Predictions Through the Speed Prior
Based on the Fastest Way of Describing Objects

Unfortunately, while M and the more general priors of Sect. 4 are computable
in the limit, they are not recursive, and thus practically infeasible. This draw-
back inspired less general yet practically more feasible principles of minimum
description length (MDL) [71, 41] as well as priors derived from time-bounded
restrictions [31] of Kolmogorov complexity [28, 62, 9]. No particular instance of
these approaches, however, is universally accepted or has a general convincing
motivation that carries beyond rather specialized application scenarios. For
instance, typical efficient MDL approaches require the specification of a class
of computable models of the data, say, certain types of neural networks, plus
some computable loss function expressing the coding costs of the data relative
to the model. This provokes numerous ad-hoc choices.

Our recent work [54], however, offers an alternative to the celebrated but
noncomputable algorithmic simplicity measure or Solomonoff-Levin measure
discussed above [62, 77, 63]. We introduced a new measure (a prior on the
computable objects) which is not based on the shortest but on the fastest way
of describing objects.

Let us assume that the observed data sequence is generated by a compu-
tational process, and that any possible sequence of observations is therefore
computable in the limit [50]. This assumption is stronger and more radical
than the traditional one: Solomonoff just insists that the probability of any
sequence prefix is recursively computable, but the (infinite) sequence itself
may still be generated probabilistically.

Given our starting assumption that data are deterministically generated
by a machine, it seems plausible that the machine suffers from a computational
resource problem. Since some things are much harder to compute than others,
the resource-oriented point of view suggests the following postulate.

Postulate 1 The cumulative prior probability measure of all x incomputable
within time t by any method is at most inversely proportional to t.

This postulate leads to the Speed Prior S(x), the probability that the output
of the following probabilistic algorithm starts with x [54]:

Initialize: Set ¢ := 1. Let the input scanning head of a universal TM
point to the first cell of its initially empty input tape.

Forever repeat: While the number of instructions executed so far ex-
ceeds t: toss an unbiased coin; if heads is up set t := 2t; otherwise exit.
If the input scanning head points to a cell that already contains a bit,
execute the corresponding instruction (of the growing self-delimiting
program, e.g., [30, 31]). Else toss the coin again, set the cell’s bit to 1
if heads is up (0 otherwise), and set t :=¢/2.
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Algorithm GUESS is very similar to a probabilistic search algorithm used
in previous work on applied inductive inference [47, 49]. On several toy prob-
lems it generalized extremely well in a way unmatchable by traditional neural
network learning algorithms.

With S comes a computable method AS for predicting optimally within e
accuracy [54]. Consider a finite but unknown program p computing y € B*.
What if Postulate 1 holds but p is not optimally efficient, and/or computed
on a computer that differs from our reference machine? Then we effectively
do not sample beginnings yx from S but from an alternative semimeasure S’.
Can we still predict well? Yes, because the Speed Prior S dominates S’. This
dominance is all we need to apply the recent loss bounds [21]. The loss that
we are expected to receive by predicting according to AS instead of using the
true but unknown S’ does not exceed the optimal loss by much [54].

6 Speed Prior-Based Predictions for Our Universe
“In the beginning was the code.”
FIRST SENTENCE OF THE GREAT PROGRAMMER’S BIBLE

Physicists and economists and other inductive scientists make predictions
based on observations. Astonishingly, however, few physicists are aware of the
theory of optimal inductive inference [62, 28]. In fact, when talking about
the very nature of their inductive business, many physicists cite rather vague
concepts such as Popper’s falsifiability [39], instead of referring to quantitative
results.

All widely accepted physical theories, however, are accepted not because
they are falsifiable — they are not — or because they match the data — many
alternative theories also match the data — but because they are simple in a
certain sense. For example, the theory of gravitation is induced from locally
observable training examples such as falling apples and movements of distant
light sources, presumably stars. The theory predicts that apples on distant
planets in other galaxies will fall as well. Currently nobody is able to verify
or falsify this. But everybody believes in it because this generalization step
makes the theory simpler than alternative theories with separate laws for ap-
ples on other planets. The same holds for superstring theory [18] or Everett’s
many-worlds theory [12], which presently also are neither verifiable nor falsi-
fiable, yet offer comparatively simple explanations of numerous observations.
In particular, most of Everett’s postulated many-worlds will remain unobserv-
able forever, but the assumption of their existence simplifies the theory, thus
making it more beautiful and acceptable.

In Sects. 3 and 4 we have made the assumption that the probabilities
of next events, given previous events, are (limit-)computable. Here we make
a stronger assumption by adopting Zuse’s thesis [75, 76], namely, that the
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very universe is actually being computed deterministically, e.g., on a cellular
automaton (CA) [68, 70]. Quantum physics, quantum computation [3, 10, 38],
Heisenberg’s uncertainty principle and Bell’s inequality [2] do not imply any
physical evidence against this possibility, e.g., [66].

But then which is our universe’s precise algorithm? The following method
[48] computes it:

Systematically create and execute all programs for a universal com-
puter, such as a Turing machine or a CA; the first program is run
for one instruction every second step on average, the next for one
instruction every second of the remaining steps on average, and so on.

This method in a certain sense implements the simplest theory of everything:
all computable universes, including ours and ourselves as observers, are com-
puted by the very short program that generates and executes all possible pro-
grams [48]. In nested fashion, some of these programs will execute processes
that again compute all possible universes, etc. [48]. Of course, observers in
“higher-level” universes may be completely unaware of observers or universes
computed by nested processes, and vice versa. For example, it seems hard to
track and interpret the computations performed by a cup of tea.

The simple method above is more efficient than it may seem at first glance.
A bit of thought shows that it even has the optimal order of complexity. For
example, it outputs our universe history as quickly as this history’s fastest
program, save for a (possibly huge) constant slowdown factor that does not
depend on output size.

Nevertheless, some universes are fundamentally harder to compute than
others. This is reflected by the Speed Prior S discussed above (Section 5).
So let us assume that our universe’s history is sampled from S or a less
dominant prior reflecting suboptimal computation of the history. Now we can
immediately predict:

1. Our universe will not get many times older than it is now [50] — essen-
tially, the probability that it will last 2™ times longer than it has lasted so far
is at most 27".

2. Any apparent randomness in any physical observation must be due
to some yet unknown but fast pseudo-random generator PRG [50] which we
should try to discover. 2a. A re-examination of beta decay patterns may reveal
that a very simple, fast, but maybe not quite trivial PRG is responsible for
the apparently random decays of neutrons into protons, electrons and antineu-
trinos. 2b. Whenever there are several possible continuations of our universe
corresponding to different Schrédinger wave function collapses — compare Ev-
erett’s widely accepted many worlds theory [12] — we should be more likely
to end up in one computable by a short and fast algorithm. A re-examination
of split experiment data involving entangled states such as the observations of
spins of initially close but soon distant particles with correlated spins might
reveal unexpected, nonobvious, nonlocal algorithmic regularity due to a fast
PRG.
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3. Large scale quantum computation [3] will not work well, essentially
because it would require too many exponentially growing computational re-
sources in interfering “parallel universes” [12].

4. Any probabilistic algorithm depending on truly random inputs from the
environment will not scale well in practice.

Prediction 2 is verifiable but not necessarily falsifiable within a fixed time
interval given in advance. Still, perhaps the main reason for the current ab-
sence of empirical evidence in this vein is that few [11] have looked for it.

In recent decades several well-known physicists have started writing about
topics of computer science, e.g., [38, 10], sometimes suggesting that real world
physics might allow for computing things that are not computable tradition-
ally. Unimpressed by this trend, computer scientists have argued in favor of
the opposite: since there is no evidence that we need more than traditional
computability to explain the world, we should try to make do without this
assumption, e.g., [75, 76, 13, 48].

7 Optimal Rational Decision Makers

So far we have talked about passive prediction, given the observations. Note,
however, that agents interacting with an environment can also use predictions
of the future to compute action sequences that maximize expected future
reward. Hutter’s recent AIXI model [22] (author’s SNF grant 61847) does
exactly this, by combining Solomonoft’s M-based universal prediction scheme
with an expectimazr computation.

In cycle t action y; results in perception x; and reward r;, where all quanti-
ties may depend on the complete history. The perception z; and reward r; are
sampled from the (reactive) environmental probability distribution . Sequen-
tial decision theory shows how to maximize the total expected reward, called
value, if p is known. Reinforcement learning [27] is used if p is unknown. AIXI
defines a mixture distribution & as a weighted sum of distributions v € M,
where M is any class of distributions including the true environment pu.

It can be shown that the conditional M probability of environmental inputs
to an AIXI agent, given the agent’s earlier inputs and actions, converges with
increasing length of interaction against the true, unknown probability [22],
as long as the latter is recursively computable, analogously to the passive
prediction case.

Recent work [24] also demonstrated AIXI’s optimality in the following
sense. The Bayes-optimal policy p¢ based on the mixture ¢ is self-optimizing
in the sense that the average value converges asymptotically for all y € M to
the optimal value achieved by the (infeasible) Bayes-optimal policy p*, which
knows g in advance. The necessary condition that M admits self-optimizing
policies is also sufficient. No other structural assumptions are made on M.
Furthermore, p¢ is Pareto-optimal in the sense that there is no other policy
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yielding higher or equal value in all environments v € M and a strictly higher
value in at least one [24].

We can modify the AIXI model such that its predictions are based on the
e-approximable Speed Prior S instead of the incomputable M. Thus we obtain
the so-called AIS model. Using Hutter’s approach [22] we can now show that
the conditional S probability of environmental inputs to an AIS agent, given
the earlier inputs and actions, converges to the true but unknown probability,
as long as the latter is dominated by S, such as the S’ above.

8 Optimal Universal Search Algorithms

In a sense, searching is less general than reinforcement learning because it does
not necessarily involve predictions of unseen data. Still, search is a central as-
pect of computer science (and any reinforcement learner needs a searcher as
a submodule — see Sects. 10 and 11). Surprisingly, however, many books on
search algorithms do not even mention the following, very simple asymptoti-
cally optimal, “universal” algorithm for a broad class of search problems.

Define a probability distribution P on a finite or infinite set of programs
for a given computer. P represents the searcher’s initial bias (e.g., P could be
based on program length, or on a probabilistic syntax diagram).

Method LSEARCH: Set current time limit T=1. WHILE problem not
solved DO:
Test all programs ¢ such that #(g), the maximal time spent on
creating and running and testing ¢, satisfies t(q) < P(q) T.
Set T := 2T.

LSeARCH (for Levin Search) may be the algorithm Levin was referring to in
his two page paper [29] which states that there is an asymptotically optimal
universal search method for problems with easily verifiable solutions, that
is, solutions whose validity can be quickly tested. Given some problem class,
if some unknown optimal program p requires f(k) steps to solve a problem
instance of size k, then LSEARCH will need at most O(f(k)/P(p)) = O(f(k))
steps — the constant factor 1/P(p) may be huge, but does not depend on
k. Compare [31, p. 502-505] and [23] and the fastest way of computing all
computable universes in Sect. 6.

Recently Hutter developed a more complex asymptotically optimal search
algorithm for all well-defined problems, not just those with with easily verifi-
able solutions [23]. HSEARCH cleverly allocates part of the total search time
for searching the space of proofs to find provably correct candidate programs
with provable upper runtime bounds, and at any given time focuses resources
on those programs with the currently best proven time bounds. Unexpect-
edly, HSEARCH manages to reduce the unknown constant slowdown factor of
LSEARCH to a value of 1+ €, where € is an arbitrary positive constant.
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Unfortunately, however, the search in proof space introduces an unknown
additive problem class-specific constant slowdown, which again may be huge.
While additive constants generally are preferrable over multiplicative ones,
both types may make universal search methods practically infeasible.

HSEARCH and LSEARCH are nonincremental in the sense that they do not
attempt to minimize their constants by exploiting experience collected in pre-
vious searches. Our method Adaptive LSEARCH or ALS tries to overcome this
[60] — compare Solomonoff’s related ideas [64, 65]. Essentially it works as
follows: whenever LSEARCH finds a program ¢ that computes a solution for
the current problem, ¢’s probability P(q) is substantially increased using a
“learning rate,” while probabilities of alternative programs decrease appro-
priately. Subsequent LSEARCHes for new problems then use the adjusted P,
etc. A nonuniversal variant of this approach was able to solve reinforcement
learning (RL) tasks [27] in partially observable environments unsolvable by
traditional RL algorithms [74, 60].

Each LSEARCH invoked by ALS is optimal with respect to the most recent
adjustment of P. On the other hand, the modifications of P themselves are
not necessarily optimal. Recent work discussed in the next section overcomes
this drawback in a principled way.

9 Optimal Ordered Problem Solver (OOPS)

Our recent OOPS [53, 55] is a simple, general, theoretically sound, in a certain
sense time-optimal way of searching for a universal behavior or program that
solves each problem in a sequence of computational problems, continually
organizing and managing and reusing earlier acquired knowledge. For example,
the n-th problem may be to compute the n-th event from previous events
(prediction), or to find a faster way through a maze than the one found during
the search for a solution to the n — 1-th problem (optimization).

Let us first introduce the important concept of bias-optimality, which is
a pragmatic definition of time-optimality, as opposed to the asymptotic op-
timality of both LSEARCH and HSEARCH, which may be viewed as academic
exercises demonstrating that the O() notation can sometimes be practically
irrelevant despite its wide use in theoretical computer science. Unlike asymp-
totic optimality, bias-optimality does not ignore huge constant slowdowns:

Definition 1 (BI1AS-OPTIMAL SEARCHERS). Given is a problem class R, a
search space C of solution candidates (where any problem r € R should have
a solution in C), a task dependent bias in form of conditional probability dis-
tributions P(q | r) on the candidates q¢ € C, and a predefined procedure that
creates and tests any given q on any r € R within time t(q,r) (typically un-
known in advance). A searcher is n-bias-optimal (n > 1) if for any mazimal
total search time Tyar > 0 it is guaranteed to solve any problem r € R if it
has a solution p € C satisfying t(p,r) < P(p | 1) Timaxz/n- It is bias-optimal if
n=1.
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This definition makes intuitive sense: the most probable candidates should
get the lion’s share of the total search time, in a way that precisely reflects
the initial bias. Now we are ready to provide a general overview of the basic
ingredients of 0OPs [53, 55]:

Primitives: We start with an initial set of user-defined primitive behaviors.
Primitives may be assembler-like instructions or time-consuming software,
such as, say, theorem provers, or matrix operators for neural network-like
parallel architectures, or trajectory generators for robot simulations, or state
update procedures for multiagent systems, etc. Each primitive is represented
by a token. It is essential that those primitives whose runtimes are not known
in advance can be interrupted at any time.

Task-specific prefix codes: Complex behaviors are represented by token
sequences or programs. To solve a given task represented by task-specific
program inputs, OOPS tries to sequentially compose an appropriate complex
behavior from primitive ones, always obeying the rules of a given user-defined
initial programming language. Programs are grown incrementally, token by
token; their beginnings or prefizes are immediately executed while being cre-
ated; this may modify some task-specific internal state or memory, and may
transfer control back to previously selected tokens (e.g., loops). To add a new
token to some program prefix, we first have to wait until the execution of the
prefix so far explicitly requests such a prolongation, by setting an appropriate
signal in the internal state. Prefixes that cease to request any further tokens
are called self-delimiting programs or simply programs (programs are their
own prefixes). Binary self-delimiting programs were studied by [30] and [8] in
the context of Turing machines [67] and the theory of Kolmogorov complexity
and algorithmic probability [62, 28]. OoPs, however, uses a more practical,
not necessarily binary framework.

The program construction procedure above yields task-specific prefix codes
on program space: with any given task, programs that halt because they have
found a solution or encountered some error cannot request any more tokens.
Given the current task-specific inputs, no program can be the prefix of an-
other one. On a different task, however, the same program may continue to
request additional tokens. This is important for our novel approach — incre-
mentally growing self-delimiting programs are unnecessary for the asymptotic
optimality properties of LSEARCH and HSEARCH, but essential for OOPS.
Access to previous solutions: Let p” denote a found prefix solving the
first m tasks. The search for p”t! may greatly profit from the information
conveyed by (or the knowledge embodied by) p',p?,...,p" which are stored
or frozen in special nonmodifiable memory shared by all tasks, such that they
are accessible to p"*! (this is another difference to nonincremental LSEARCH
and HSEARCH). For example, p"™! might execute a token sequence that calls
p™~3 as a subprogram, or that copies p”~'7 into some internal modifiable task-
specific memory, then modifies the copy a bit, then applies the slightly edited
copy to the current task. In fact, since the number of frozen programs may
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grow to a large value, much of the knowledge embodied by p’ may be about
how to access and edit and use older p (i < j).
Bias: The searcher’s initial bias is embodied by initial, user-defined, task de-
pendent probability distributions on the finite or infinite search space of pos-
sible program prefixes. In the simplest case we start with a maximum entropy
distribution on the tokens, and define prefix probabilities as the products of
the probabilities of their tokens. But prefix continuation probabilities may
also depend on previous tokens in context sensitive fashion.
Self-computed suffix probabilities: In fact, we permit that any executed
prefix assigns a task-dependent, self-computed probability distribution to its
own possible continuations. This distribution is encoded and manipulated
in task-specific internal memory. So, unlike with ALS [60], we do not use a
prewired learning scheme to update the probability distribution. Instead we
leave such updates to prefixes whose online execution modifies the proba-
bilities of their suffixes. By, say, invoking previously frozen code that rede-
fines the probability distribution on future prefix continuations, the currently
tested prefix may completely reshape the most likely paths through the search
space of its own continuations, based on experience ignored by nonincremental
LSEARCH and HSEARCH. This may introduce significant problem class-specific
knowledge derived from solutions to earlier tasks.
Two searches: Essentially, OOPS provides equal resources for two near-bias-
optimal searches (Def. 1) that run in parallel until p"*! is discovered and
stored in non-modifiable memory. The first is exhaustive; it systematically
tests all possible prefixes on all tasks up to n+1. Alternative prefixes are tested
on all current tasks in parallel while still growing; once a task is solved, we
remove it from the current set; prefixes that fail on a single task are discarded.
The second search is much more focused; it only searches for prefixes that start
with p™, and only tests them on task n + 1, which is safe, because we already
know that such prefixes solve all tasks up to n.
Bias-optimal backtracking: HSEARCH and LSEARCH assume potentially
infinite storage. Hence, they may largely ignore questions of storage manage-
ment. In any practical system, however, we have to efficiently reuse limited
storage. Therefore, in both searches of OOPS, alternative prefix continuations
are evaluated by a novel, practical, token-oriented backtracking procedure that
can deal with several tasks in parallel, given some code bias in the form of pre-
viously found code. The procedure always ensures near-bias-optimality (Def.
1): no candidate behavior gets more time than it deserves, given the prob-
abilistic bias. Essentially we conduct a depth-first search in program space,
where the branches of the search tree are program prefixes, and backtracking
(partial resets of partially solved task sets and modifications of internal states
and continuation probabilities) is triggered once the sum of the runtimes of
the current prefix on all current tasks exceeds the prefix probability multiplied
by the total search time so far.

In case of unknown, infinite task sequences we can typically never know
whether we already have found an optimal solver for all tasks in the sequence.
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But once we unwittingly do find one, at most half of the total future run time
will be wasted on searching for alternatives. Given the initial bias and subse-
quent bias shifts due to p', p?,. .., no other bias-optimal searcher can expect
to solve the n + 1-th task set substantially faster than 0OPS. A by-product
of this optimality property is that it gives us a natural and precise measure
of bias and bias shifts, conceptually related to Solomonoft’s conceptual jump
size [64, 65].

Since there is no fundamental difference between domain-specific problem-
solving programs and programs that manipulate probability distributions and
thus essentially rewrite the search procedure itself, we collapse both learning
and metalearning in the same time-optimal framework.

An example initial language. For an illustrative application, we wrote
an interpreter for a stack-based universal programming language inspired by
FORTH [35], with initial primitives for defining and calling recursive functions,
iterative loops, arithmetic operations, and domain-specific behavior. Optimal
metasearching for better search algorithms is enabled through the inclusion
of bias-shifting instructions that can modify the conditional probabilities of
future search options in currently running program prefixes.

Experiments. Using the assembler-like language mentioned above, we first
teach OOPS something about recursion, by training it to construct samples of
the simple context free language {1¥2*} (k 1’s followed by k 2’s), for k up
to 30 (in fact, the system discovers a universal solver for all k). This takes
roughly 0.3 days on a standard personal computer (PC). Thereafter, within
a few additional days, 0OPS demonstrates incremental knowledge transfer: it
exploits aspects of its previously discovered universal 1¥2*-solver, by rewriting
its search procedure such that it more readily discovers a universal solver for all
k disk Towers of Hanoi problems — in the experiments it solves all instances
up to k = 30 (solution size 2* —1), but it would also work for & > 30. Previous,
less general reinforcement learners and nonlearning Al planners tend to fail
for much smaller instances.

Future research may focus on devising particularly compact, particularly
reasonable sets of initial codes with particularly broad practical applicabil-
ity. It may turn out that the most useful initial languages are not traditional
programming languages similar to the FORTH-like one, but instead based on
a handful of primitive instructions for massively parallel cellular automata
[68, 70, 76], or on a few nonlinear operations on matrix-like data structures
such as those used in recurrent neural network research [72, 44, 4]. For exam-
ple, we could use the principles of OOPS to create a non-gradient-based, near-
bias-optimal variant of Hochreiter’s successful recurrent network metalearner
[19]. It should also be of interest to study probabilistic Speed Prior-based OOPS
variants [54] and to devise applications of 00Ps-like methods as components of
universal reinforcement learners (see below). In ongoing work, we are applying
00PS to the problem of optimal trajectory planning for robotics in a realistic
physics simulation. This involves the interesting trade-off between compara-
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tively fast program-composing primitives or “thinking primitives” and time-
consuming “action primitives,” such as stretch-arm-until-touch-sensor-input.

10 OOPS-Based Reinforcement Learning

At any given time, a reinforcement learner [27] will try to find a policy (a
strategy for future decision making) that maximizes its expected future re-
ward. In many traditional reinforcement learning (RL) applications, the policy
that works best in a given set of training trials will also be optimal in future
test trials [51]. Sometimes, however, it won’t. To see the difference between
searching (the topic of the previous sections) and reinforcement learning (RL),
consider an agent and two boxes. In the n-th trial the agent may open and
collect the content of exactly one box. The left box will contain 100n Swiss
Francs, the right box 2" Swiss Francs, but the agent does not know this in
advance. During the first 9 trials the optimal policy is “open left box.” This
is what a good searcher should find, given the outcomes of the first 9 trials.
But this policy will be suboptimal in trial 10. A good reinforcement learner,
however, should extract the underlying regularity in the reward generation
process and predict the future tasks and rewards, picking the right box in
trial 10, without having seen it yet.

The first general, asymptotically optimal reinforcement learner is the re-
cent AIXT model [22, 24] (Section 7). It is valid for a very broad class of en-
vironments whose reactions to action sequences (control signals) are sampled
from arbitrary computable probability distributions. This means that AIXI is
far more general than traditional RL approaches. However, while AIXT clarifies
the theoretical limits of RL, it is not practically feasible, just like HSEARCH is
not. From a pragmatic point of view, we are really interested in a reinforcement
learner that makes optimal use of given, limited computational resources. The
following outlines one way of using 00OPs-like bias-optimal methods as com-
ponents of general yet feasible reinforcement learners.

We need two 00PS modules. The first is called the predictor or world
model. The second is an action searcher using the world model. The life of
the entire system should consist of a sequence of cycles 1, 2, ... At each cycle,
a limited amount of computation time will be available to each module. For
simplicity we assume that during each cyle the system may take exactly one ac-
tion. Generalizations to actions consuming several cycles are straight-forward
though. At any given cycle, the system executes the following procedure:

1. For a time interval fixed in advance, the predictor is first trained in bias-
optimal fashion to find a better world model, that is, a program that
predicts the inputs from the environment (including the rewards, if there
are any), given a history of previous observations and actions. So the n-th
task (n =1,2,...) of the first 0OPs module is to find (if possible) a better
predictor than the best found so far.
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2. After the current cycle’s time for predictor improvement is finished, the
current world model (prediction program) found by the first 00OPS module
will be used by the second module, again in bias-optimal fashion, to search
for a future action sequence that maximizes the predicted cumulative re-
ward (up to some time limit). That is, the n-th task (n = 1,2,...) of the
second 00OPs module will be to find a control program that computes a
control sequence of actions, to be fed into the program representing the
current world model (whose input predictions are successively fed back
to itself in the obvious manner), such that this control sequence leads
to higher predicted reward than the one generated by the best control
program found so far.

3. After the current cycle’s time for control program search is finished, we
will execute the current action of the best control program found in step
2. Now we are ready for the next cycle.

The approach is reminiscent of an earlier, heuristic, non-bias-optimal RL ap-
proach based on two adaptive recurrent neural networks, one representing the
world model, the other one a controller that uses the world model to extract
a policy for maximizing expected reward [46]. The method was inspired by
previous combinations of nonrecurrent, reactive world models and controllers
[73, 37, 26].

At any given time, until which temporal horizon should the predictor try
to predict? In the AIXI case, the proper way of treating the temporal horizon
is not to discount it exponentially, as done in most traditional work on rein-
forcement learning, but to let the future horizon grow in proportion to the
learner’s lifetime so far [24]. It remains to be seen whether this insight carries
over to OOPS-RL.

Despite the bias-optimality properties of OOPS for certain ordered task
sequences, however, OOPS-RL is not necessarily the best way of spending lim-
ited time in general reinforcement learning situations. On the other hand, it
is possible to use OOPS as a proof-searching submodule of the recent, optimal,
universal, reinforcement learning Godel machine [56] discussed in the next
section.

11 The Godel Machine

The Godel machine [56], also this volume, explicitly addresses the ‘Grand
Problem of Artificial Intelligence’ [58] by optimally dealing with limited re-
sources in general reinforcement learning settings, and with the possibly huge
(but constant) slowdowns buried by AIXI(¢,1) [22] in the somewhat mislead-
ing O()-notation. It is designed to solve arbitrary computational problems
beyond those solvable by plain 0OPS, such as maximizing the expected future
reward of a robot in a possibly stochastic and reactive environment (note that
the total utility of some robot behavior may be hard to verify — its evaluation
may consume the robot’s entire lifetime).
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How does it work? While executing some arbitrary initial problem solv-
ing strategy, the Godel machine simultaneously runs a proof searcher which
systematically and repeatedly tests proof techniques. Proof techniques are
programs that may read any part of the Gédel machine’s state, and write on
a reserved part which may be reset for each new proof technique test. In an
example Godel machine [56] this writable storage includes the variables proof
and switchprog, where switchprog holds a potentially unrestricted program
whose execution could completely rewrite any part of the Godel machine’s
current software. Normally the current switchprog is not executed. However,
proof techniques may invoke a special subroutine check() which tests whether
proof currently holds a proof showing that the utility of stopping the sys-
tematic proof searcher and transferring control to the current switchprog at a
particular point in the near future exceeds the utility of continuing the search
until some alternative switchprog is found. Such proofs are derivable from the
proof searcher’s axiom scheme which formally describes the utility function to
be maximized (typically the expected future reward in the expected remaining
lifetime of the Godel machine), the computational costs of hardware instruc-
tions (from which all programs are composed), and the effects of hardware
instructions on the Godel machine’s state. The axiom scheme also formal-
izes known probabilistic properties of the possibly reactive environment, and
also the initial Godel machine state and software, which includes the axiom
scheme itself (no circular argument here). Thus proof techniques can reason
about expected costs and results of all programs including the proof searcher.

Once check() has identified a provably good switchprog, the latter is exe-
cuted (some care has to be taken here because the proof verification itself and
the transfer of control to switchprog also consume part of the typically limited
lifetime). The discovered switchprog represents a globally optimal self-change
in the following sense: provably none of all the alternative switchprogs and
proofs (that could be found in the future by continuing the proof search) is
worth waiting for.

There are many ways of initializing the proof searcher. Although identical
proof techniques may yield different proofs depending on the time of their
invocation (due to the continually changing Godel machine state), there is
a bias-optimal and asymptotically optimal proof searcher initialization based
on a variant of 0OPs [56] (Sect. 9). It exploits the fact that proof verification
is a simple and fast business where the particular optimality notion of OOPS
is appropriate. The Goédel machine itself, however, may have an arbitrary,
typically different and more powerful sense of optimality embodied by its given
utility function.

12 Conclusion

Recent theoretical and practical advances are currently driving a renaissance
in the fields of universal learners and optimal search [59]. A new kind of AT is
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emerging. Does it really deserve the attribute “new,” given that its roots date
back to the 1930s, when Godel published the fundamental result of theoretical
computer science [16] and Zuse started to build the first general purpose com-
puter (completed in 1941), and the 1960s, when Solomonoff and Kolmogorov
published their first relevant results? An affirmative answer seems justified,
since it is the recent results on practically feasible computable variants of the
old incomputable methods that are currently reinvigorating the long dormant
field. The “new” Al is new in the sense that it abandons the mostly heuris-
tic or non-general approaches of the past decades, offering methods that are
both general and theoretically sound, and provably optimal in a sense that
does make sense in the real world.

We are led to claim that the future will belong to universal or near-
universal learners that are more general than traditional reinforcement learn-
ers/decision makers depending on strong Markovian assumptions, or than
learners based on traditional statistical learning theory, which often require
unrealistic i.i.d. or Gaussian assumptions. Due to ongoing hardware advances,
the time has come for optimal search in algorithm space, as opposed to the
limited space of reactive mappings embodied by traditional methods such as
artificial feedforward neural networks.

It seems safe to bet that not only computer scientists but also physicists
and other inductive scientists will start to pay more attention to the fields
of universal induction and optimal search, since their basic concepts are ir-
resistibly powerful and general and simple. How long will it take for these
ideas to unfold their full impact? A very naive and speculative guess driven
by wishful thinking might be based on identifying the “greatest moments in
computing history” and extrapolating from there. Which are those “greatest
moments?”’ Obvious candidates are:

1. 1623: first mechanical calculator by Schickard starts the computing age
(followed by machines of Pascal, 1640, and Leibniz, 1670).

2. Roughly two centuries later: concept of a programmable computer (Bab-
bage, UK, 1834-1840).

3. One century later: fundamental theoretical work on universal integer-
based programming languages and the limits of proof and computation
(Godel, Austria, 1931, reformulated by Turing, UK, 1936); first working
programmable computer (Zuse, Berlin, 1941). (The next 50 years saw
many theoretical advances as well as faster and faster switches — re-
lays were replaced by tubes by single transistors by numerous transistors
etched on chips — but arguably this was rather predictable, incremental
progress without radical shake-up events.)

4. Half a century later: World Wide Web (UK’s Berners-Lee, Switzerland,
1990).

This list seems to suggest that each major breakthrough tends to come roughly
twice as fast as the previous one. Extrapolating the trend, optimists should
expect the next radical change to manifest itself one quarter of a century after
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the most recent one, that is, by 2015, which happens to coincide with the
date when the fastest computers will match brains in terms of raw computing
power, according to frequent estimates based on Moore’s law. The author is
confident that the coming 2015 upheaval (if any) will involve universal learning
algorithms and Godel machine-like, optimal, incremental search in algorithm
space [56] — possibly laying a foundation for the remaining series of faster
and faster additional revolutions culminating in an “Omega point” expected
around 2040.
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Summary. We present the first class of mathematically rigorous, general, fully
self-referential, self-improving, optimally efficient problem solvers. Inspired by Kurt
Godel’s celebrated self-referential formulas (1931), such a problem solver rewrites
any part of its own code as soon as it has found a proof that the rewrite is useful,
where the problem-dependent wtility function and the hardware and the entire ini-
tial code are described by axioms encoded in an initial proof searcher which is also
part of the initial code. The searcher systematically and efficiently tests computable
proof techniques (programs whose outputs are proofs) until it finds a provably useful,
computable self-rewrite. We show that such a self-rewrite is globally optimal—no
local maximal—since the code first had to prove that it is not useful to continue the
proof search for alternative self-rewrites. Unlike previous non-self-referential meth-
ods based on hardwired proof searchers, ours not only boasts an optimal order of
complexity but can optimally reduce any slowdowns hidden by the O()-notation,
provided the utility of such speed-ups is provable at all.

1 Introduction and Outline

In 1931 Kurt Godel used elementary arithmetics to build a universal pro-
gramming language for encoding arbitrary proofs, given an arbitrary enumer-
able set of axioms. He went on to construct self-referential formal statements
that claim their own unprovability, using Cantor’s diagonalization trick [5] to
demonstrate that formal systems such as traditional mathematics are either
flawed in a certain sense or contain unprovable but true statements [11]. Since
Godel’s exhibition of the fundamental limits of proof and computation, and
Konrad Zuse’s subsequent construction of the first working programmable
computer (1935-1941), there has been a lot of work on specialized algorithms
solving problems taken from more or less general problem classes. Apparently,
however, one remarkable fact has so far escaped the attention of computer sci-
entists: it is possible to use self-referential proof systems to build optimally
efficient yet conceptually very simple universal problem solvers.

All traditional algorithms for problem solving / machine learning / rein-
forcement learning [19] are hardwired. Some are designed to improve some
limited type of policy through experience, but are not part of the modifiable

*Certain parts of this work appear in [46] and [47], both by Springer.
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policy, and cannot improve themselves in a theoretically sound way. Humans
are needed to create new/better problem solving algorithms and to prove their
usefulness under appropriate assumptions.

Let us eliminate the restrictive need for human effort in the most general
way possible, leaving all the work including the proof search to a system that
can rewrite and improve itself in arbitrary computable ways and in a most
efficient fashion. To attack this “Grand Problem of Artificial Intelligence,” we
introduce a novel class of optimal, fully self-referential [11] general problem
solvers called Gédel machines [43].! They are universal problem solving sys-
tems that interact with some (partially observable) environment and can in
principle modify themselves without essential limits besides the limits of com-
putability. Their initial algorithm is not hardwired; it can completely rewrite
itself, but only if a proof searcher embedded within the initial algorithm can
first prove that the rewrite is useful, given a formalized utility function reflect-
ing computation time and expected future success (e.g., rewards). We will see
that self-rewrites due to this approach are actually globally optimal (Theo-
rem 1, Section 4), relative to Godel’s well-known fundamental restrictions of
provability [11]. These restrictions should not worry us; if there is no proof of
some self-rewrite’s utility, then humans cannot do much either.

The initial proof searcher is O()-optimal (has an optimal order of complex-

ity) in the sense of Theorem 2, Section 5. Unlike Hutter’s hardwired systems
[17, 16] (Section 2), however, a Godel machine can further speed up its proof
searcher to meet arbitrary formalizable notions of optimality beyond those
expressible in the O()-notation. Our approach yields the first theoretically
sound, fully self-referential, optimal, general problem solvers.
Outline. Section 2 presents basic concepts, relations to the most relevant
previous work, and limitations. Section 3 presents the essential details of a
self-referential axiomatic system, Section 4 the Global Optimality Theorem 1,
and Section 5 the O()-optimal (Theorem 2) initial proof searcher. Section 6
provides examples and additional relations to previous work, briefly discusses
issues such as a technical justification of consciousness, and provides answers
to several frequently asked questions about Goédel machines.

2 Basic Overview, Relation to Previous Work, and
Limitations

Many traditional problems of computer science require just one problem-
defining input at the beginning of the problem solving process. For example,
the initial input may be a large integer, and the goal may be to factorize it.
In what follows, however, we will also consider the more general case where

10r ‘Goedel machine’, to avoid the Umlaut. But ‘Godel machine’ would not be
quite correct. Not to be confused with what Penrose calls, in a different context,
‘Godel’s putative theorem-proving machine’ [29]!
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the problem solution requires interaction with a dynamic, initially unknown
environment that produces a continual stream of inputs and feedback signals,
such as in autonomous robot control tasks, where the goal may be to maxi-
mize expected cumulative future reward [19]. This may require the solution
of essentially arbitrary problems (examples in Sect. 6.2 formulate traditional
problems as special cases).

2.1 Notation and Set-up

Unless stated otherwise or obvious, throughout the paper newly introduced
variables and functions are assumed to cover the range implicit in the context.
B denotes the binary alphabet {0,1}, B* the set of possible bitstrings over
B, I(q) denotes the number of bits in a bitstring ¢; ¢, the n-th bit of ¢; A the
empty string (where [(A) = 0); ¢ = Aif m > n and ¢m@m+1 - - - ¢ otherwise
(where qo := go.0 := ).

Our hardware (e.g., a universal or space-bounded Turing machine or the
abstract model of a personal computer) has a single life which consists of
discrete cycles or time steps t = 1,2, . ... Its total lifetime 7" may or may not
be known in advance. In what follows, the value of any time-varying variable
Q@ at time ¢t will be denoted by Q(t). Occasionally it may be convenient to
consult Fig. 1.

During each cycle our hardware executes an elementary operation which
affects its variable state s € & C B* and possibly also the variable environ-
mental state Env € £. (Here we need not yet specify the problem-dependent
set £). There is a hardwired state transition function F': Sx& — S. For ¢ > 1,
s(t) = F(s(t — 1), Env(t — 1)) is the state at a point where the hardware op-
eration of cycle ¢t — 1 is finished, but the one of ¢ has not started yet. Env(t)
may depend on past output actions encoded in s(t — 1) and is simultaneously
updated or (probabilistically) computed by the possibly reactive environment.

In order to conveniently talk about programs and data, we will often attach
names to certain string variables encoded as components or substrings of s.
Of particular interest are 3 variables called time, z, y, p:

1. At time ¢, variable time holds a unique binary representation of ¢. We
initialize time(1) = ‘1, the bitstring consisting only of a one. The hard-
ware increments time from one cycle to the next. This requires at most
O(log t) and on average only O(1) computational steps.

2. Variable z holds environmental inputs. For ¢ > 1, z(¢) may differ from
x(t — 1) only if a program running on the Gdédel machine has executed
a special input-requesting instruction at time ¢ — 1. Generally speaking,
the delays between successive inputs should be sufficiently large so that
programs can perform certain elementary computations on an input, such
as copying it into internal storage (a reserved part of s) before the next
input arrives.



202 Jiirgen Schmidhuber

storage proof
writable
by proof
searcher: | switchprog
switchbit
temporary storage
of proof technique
currently tested
proof technique
— = initial proof technique
Z z‘ proof tester
b s searcher:
% = axioms for hard—
& 2 ware, initial soft—
> C ware, environment,
5 g costs & goals
initial problem solver e(1) for
interaction with environment
temporary storage of e(1)
- | output y
- input x

time

other hardware variables

writable by
proof techniques

storage readable by proof techniques

writable by switchprog

writable

hardware—

Fig. 1: Storage snapshot of a not yet self-improved example Godel machine, with
the initial software still intact. See text for details.

3. y(t) is an output bitstring which may subsequently influence the environ-
ment, where y(1) = ‘0’ by default. For example, y(t) could be interpreted
as a control signal for an environment-manipulating robot whose actions

may have an effect on future inputs.

4. p(1) is the initial software: a program implementing the original policy for
interacting with the environment and for proof searching. Details will be

discussed below.

At any given time ¢t (1 < ¢ < T') the goal is to maximize future success
or utility. A typical “value to go” utility function (to be maximized) is of the
form u(s, Env) : § x £ — R, where R is the set of real numbers:
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T

> r(n)

T=time

u(s, Env) = E, s, Env| , (1)

where r(t) is a real-valued reward input (encoded within s(t)) at time ¢,
E,(- | -) denotes the conditional expectation operator with respect to some
possibly unknown distribution p from a set M of possible distributions (M
reflects whatever is known about the possibly probabilistic reactions of the
environment), and the above-mentioned time = time(s) is a function of state
s which uniquely identifies the current cycle. Note that we take into account
the possibility of extending the expected lifespan E, (T | s, Env) through
appropriate actions.

Alternative formalizable utility functions could favor improvement of worst
case instead of expected future performance, or higher reward intake per time
interval etc.

2.2 Basic Idea of Godel Machine

Our machine becomes a self-referential [11] Gddel machine by loading it with
a particular form of machine-dependent, self-modifying code p. The initial
code p(1) at time step 1 includes a (typically sub-optimal) problem solving
subroutine for interacting with the environment, such as Q-learning [19], and
a general proof searcher subroutine (Section 5) that systematically makes
pairs (switchprog, proof) (variable substrings of s) until it finds a proof of a
target theorem which essentially states: ‘the immediate rewrite of p through
current program switchprog on the given machine implies higher utility than
leaving p as is’. Then it executes switchprog, which may completely rewrite
p, including the proof searcher. Section 3 will explain details of the necessary
initial axiomatic system A encoded in p(1).

The Global Optimality Theorem (Theorem 1, Sect. 4) shows this self-improve-
ment strategy is not greedy: since the utility of ‘leaving p as is’ implicitly
evaluates all possible alternative switchprogs which an unmodified p might
find later, we obtain a globally optimal self-change—the current switchprog
represents the best of all possible relevant self-changes, relative to the given
resource limitations and initial proof search strategy.

2.3 Proof Techniques and an O()-optimal Initial Proof Searcher.

Section 5 will present an O()-optimal initialization of the proof searcher, that
is, one with an optimal order of complexity (Theorem 2). Still, there will
remain a lot of room for self-improvement hidden by the O()-notation. The
searcher uses an online extension of Universal Search [23, 25] to systematically
test online proof techniques, which are proof-generating programs that may
read parts of state s (similarly, mathematicians are often more interested in
proof techniques than in theorems). To prove target theorems as above, proof
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techniques may invoke special instructions for generating axioms and applying
inference rules to prolong the current proof by theorems. Here an axiomatic
system A encoded in p(1) includes axioms describing (@) how any instruction
invoked by a program running on the given hardware will change the machine’s
state s (including instruction pointers etc.) from one step to the next (such
that proof techniques can reason about the effects of any program including
the proof searcher), (b) the initial program p(1) itself (Section 3 will show that
this is possible without introducing circularity), (¢) stochastic environmental
properties, (d) the formal utility function u, e.g., equation (1). The evaluation
of utility automatically takes into account computational costs of all actions
including proof search.

2.4 Relation to Hutter’s Previous Work

Hutter’s non-self-referential but still O()-optimal ‘fastest’ algorithm for all
well-defined problems HSEARCH [17] uses a hardwired brute force proof search-
er. Assume discrete input/output domains X/Y, a formal problem specifica-
tion f: X — Y (say, a functional description of how integers are decomposed
into their prime factors), and a particular z € X (say, an integer to be fac-
torized). HSEARCH orders all proofs of an appropriate axiomatic system by
size to find programs ¢ that for all z € X provably compute f(z) within time
bound ¢4(z). Simultaneously it spends most of its time on executing the ¢ with
the best currently proven time bound ¢,(z). It turns out that HSEARCH is as
fast as the fastest algorithm that provably computes f(z) for all z € X, save
for a constant factor smaller than 1+ ¢ (arbitrary ¢ > 0) and an f-specific but
z-independent additive constant [17]. This constant may be enormous though.
Hutter’s Aixi(t,l) [16] is related. In discrete cycle k = 1,2,3,... of
A1xi(t,l)’s lifetime, action y(k) results in perception z(k) and reward r(k),
where all quantities may depend on the complete history. Using a universal
computer such as a Turing machine, AIXI(%,]) needs an initial offline setup
phase (prior to interaction with the environment) where it uses a hardwired
brute force proof searcher to examine all proofs of length at most L, filtering
out those that identify programs (of maximal size ! and maximal runtime ¢
per cycle) which not only could interact with the environment but which for
all possible interaction histories also correctly predict a lower bound of their
own expected future reward. In cycle k, A1x1(%,1) then runs all programs iden-
tified in the setup phase (at most 2!), finds the one with highest self-rating,
and executes its corresponding action. The problem-independent setup time
(where almost all of the work is done) is O(L - 2L). The online time per cycle
is O(t - 2'). Both are constant but typically huge.
Advantages and Novelty of the G6del Machine. There are major dif-
ferences between the Godel machine and Hutter’s HSEARCH [17] and A1x1(t,1)
[16], including:

1. The theorem provers of HSEARCH and AIxI(t,]) are hardwired, non-
self-referential, unmodifiable meta-algorithms that cannot improve them-
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selves. That is, they will always suffer from the same huge constant slow-
downs (typically > 101%90) buried in the O()-notation. But there is noth-
ing in principle that prevents our truly self-referential code from proving
and exploiting drastic reductions of such constants, in the best possible
way that provably constitutes an improvement, if there is any.

2. The demonstration of the O()-optimality of HSEARCH and A1x1(t,l) de-
pends on a clever allocation of computation time to some of their un-
modifiable meta-algorithms. Our Global Optimality Theorem (Theorem
1, Section 4), however, is justified through a quite different type of rea-
soning which indeed exploits and crucially depends on the fact that there
is no unmodifiable software at all, and that the proof searcher itself is
readable and modifiable and can be improved. This is also the reason why
its self-improvements can be more than merely O()-optimal.

3. HSEARCH uses a “trick” of proving more than is necessary which also dis-
appears in the sometimes quite misleading O()-notation: it wastes time on
finding programs that provably compute f(z) for all z € X even when the
current f(x)(x € X) is the only object of interest. A Godel machine, how-
ever, needs to prove only what is relevant to its goal formalized by u. For
example, the general u of eq. (1) completely ignores the limited concept of
O()-optimality, but instead formalizes a stronger type of optimality that
does not ignore huge constants just because they are constant.

4. Both the Godel machine and AIXIi(%,]) can maximize expected reward
(HSEARCH cannot). But the Godel machine is more flexible as we may
plug in any type of formalizable utility function (e.g., worst case reward),
and unlike A1x1(%,0) it does not require an enumerable environmental dis-
tribution.

Nevertheless, we may use A1x1(t,l) or HSEARCH to initialize the substring e
of p which is responsible for interaction with the environment. The Godel
machine will replace e as soon as it finds a provably better strategy.

2.5 Limitations of Go6del Machines

The fundamental limitations are closely related to those first identified by
Godel’s celebrated paper on self-referential formulae [11]. Any formal system
that encompasses arithmetics (or ZFC, etc.) is either flawed or allows for un-
provable but true statements. Hence, even a Gdédel machine with unlimited
computational resources must ignore those self-improvements whose effective-
ness it cannot prove, e.g., for lack of sufficiently powerful axioms in A. In
particular, one can construct pathological examples of environments and util-
ity functions that make it impossible for the machine to ever prove a target
theorem. Compare Blum’s speed-up theorem [3, 4] based on certain incom-
putable predicates. Similarly, a realistic Gédel machine with limited resources
cannot profit from self-improvements whose usefulness it cannot prove within
its time and space constraints.
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Nevertheless, unlike previous methods, it can in principle exploit at least
the provably good speed-ups of any part of its initial software, including those
parts responsible for huge (but problem class-independent) slowdowns ignored
by the earlier approaches [17, 16].

3 Essential Details of One Representative Godel Machine

Theorem proving requires an axiom scheme yielding an enumerable set of
axioms of a formal logic system A whose formulas and theorems are symbol
strings over some finite alphabet that may include traditional symbols of logic
(such as —, A, =,(,),¥,3,..., c1,¢2,..., f1, f2,...), probability theory (such
as E(-), the expectation operator), arithmetics (+,—,/,=,>.,<,...), string
manipulation (in particular, symbols for representing any part of state s at
any time, such as s7.55(5555)). A proof is a sequence of theorems, each either
an axiom or inferred from previous theorems by applying one of the inference
rules such as modus ponens combined with unification, e.g., [10].

The remainder of this chapter will omit standard knowledge to be found
in any proof theory textbook. Instead of listing all axioms of a particular A
in a tedious fashion, we will focus on the novel and critical details: how to
overcome problems with self-reference and how to deal with the potentially
delicate online generation of proofs that talk about and affect the currently
running proof generator itself.

3.1 Proof Techniques

Brute force proof searchers (used in Hutter’s Aixi(t,l) and HSEARCH; see
Section 2.4) systematically generate all proofs in order of their sizes. To pro-
duce a certain proof, this takes time exponential in proof size. Instead our
O()-optimal p(1) will produce many proofs with low algorithmic complex-
ity [62, 21, 26] much more quickly. It systematically tests (see Sect. 5) proof
techniques written in universal language £ implemented within p(1). For ex-
ample, £ may be a variant of PROLOG [7] or the universal FORTH[28]-inspired
programming language used in recent work on optimal search [45]. A proof
technique is composed of instructions that allow any part of s to be read, such
as inputs encoded in variable z (a substring of s) or the code of p(1). It may
write on sP, a part of s reserved for temporary results. It also may rewrite
switchprog, and produce an incrementally growing proof placed in the string
variable proof stored somewhere in s. proof and sP are reset to the empty string
at the beginning of each new proof technique test. Apart from standard arith-
metic and function-defining instructions [45] that modify s?, the programming
language £ includes special instructions for prolonging the current proof by
correct theorems, for setting switchprog, and for checking whether a provably
optimal p-modifying program was found and should be executed now. Certain
long proofs can be produced by short proof techniques.
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The nature of the six proofmodifying instructions below (there are no
others) makes it impossible to insert an incorrect theorem into proof, thus
trivializing proof verification:

1. get-axiom(n) takes as argument an integer n computed by a prefix of the
currently tested proof technique with the help of arithmetic instructions
such as those used in previous work [45]. Then it appends the n-th axiom
(if it exists, according to the axiom scheme below) as a theorem to the
current theorem sequence in proof. The initial axiom scheme encodes:

a) Hardware axioms describing the hardware, formally specifying how
certain components of s (other than environmental inputs x) may
change from one cycle to the next.

For example, if the hardware is a Turing machine? (TM) [56], then
s(t) is a bitstring that encodes the current contents of all tapes of the
TM, the positions of its scanning heads, and the current internal state
of the TM’s finite state automaton, while F' specifies the TM’s look-
up table which maps any possible combination of internal state and
bits above scanning heads to a new internal state and an action such
as: replace some head’s current bit by 1/0, increment (right shift) or
decrement (left shift) some scanning head, read and copy next input
bit to cell above input tape’s scanning head, etc. Alternatively, if the
hardware is given by the abstract model of a modern microprocessor
with limited storage, s(¢) will encode the current storage contents,
register values, instruction pointers, etc.

For example, the following axiom could describe how some 64-bit hard-
ware’s instruction pointer stored in si.¢4 is continually incremented as
long as there is no overflow and the value of sg5 does not indicate that
a jump to some other address should take place:

(Vtvn: [(n <2 —D)AMm>0)AE>1)A{<T)

A(string2num(si.64(t)) = n) A (ses5(t) = 07)]
— (string2num(s1.64(t +1)) = n+ 1))

Here the semantics of used symbols such as ‘(" and ‘>’ and ‘=’ (im-

plies) are the traditional ones, while ‘string2num’ symbolizes a func-
tion translating bitstrings into numbers. It is clear that any abstract
hardware model can be fully axiomatized in a similar way.

b) Reward axioms defining the computational costs of any hardware
instruction, and physical costs of output actions (e.g., control signals

2Turing reformulated Godel’s unprovability results in terms of Turing machines
(TMs) [56] which subsequently became the most widely used abstract model of
computation. It is well-known that there are universal TMs that in a certain sense
can emulate any other TM or any other known computer. Gédel’s integer-based
formal language can be used to describe any universal TM, and vice versa.
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y(t) encoded in s(t)). Related axioms assign values to certain input
events (encoded in variable z, a substring of s) representing reward or
punishment (e.g., when a Goédel machine-controlled robot bumps into
an obstacle). Additional axioms define the total value of the Gddel
machine’s life as a scalar-valued function of all rewards (e.g., their
sum) and costs experienced between cycles 1 and T', etc. For example,
assume that si7.18 can be changed only through external inputs; the
following example axiom says that the total reward increases by 3
whenever such an input equals ‘11’ (unexplained symbols carry the
obvious meaning):

(Vtth : [(tl < tg) A (tl > 1) A (tQ < T) 74\ (817:18(t2) = ‘117)}

— [R(tl,tz) = R(tth - 1) + 3])a

where R(t1,t2) is interpreted as the cumulative reward between times
t1 and to. It is clear that any formal scheme for producing rewards
can be fully axiomatized in a similar way.

Environment axioms restricting the way the environment will pro-
duce new inputs (encoded within certain substrings of s) in reaction to
sequences of outputs y encoded in s. For example, it may be known in
advance that the environment is sampled from an unknown probability
distribution that is computable, given the previous history [52, 53, 16],
or at least limit-computable [39, 40]. Or, more restrictively, the envi-
ronment may be some unknown but deterministic computer program
[58, 37] sampled from the Speed Prior [41] which assigns low probabil-
ity to environments that are hard to compute by any method. Or the
interface to the environment is Markovian [33], that is, the current in-
put always uniquely identifies the environmental state—a lot of work
has been done on this special case [31, 2, 55]. Even more restrictively,
the environment may evolve in completely predictable fashion known
in advance. All such prior assumptions are perfectly formalizable in an
appropriate A (otherwise we could not write scientific papers about
them).

Uncertainty axioms; string manipulation axioms: Standard ax-
ioms for arithmetics and calculus and probability theory [20] and
statistics and string manipulation that (in conjunction with the en-
vironment axioms) allow for constructing proofs concerning (possibly
uncertain) properties of future values of s(t) as well as bounds on ex-
pected remaining lifetime / costs / rewards, given some time 7 and
certain hypothetical values for components of s(7) etc. An example
theorem saying something about expected properties of future inputs
x might look like this:

(VtNu cM: [(1 < tl) A (tl + 15597 < T) A\ (85;g(t1) = ‘01011’)
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/\(3340;44 (tl) = ‘OOOOO’)} — (Eit : [(tl <t<t;+ 15597)

998
Too0))

where P,(. | .) represents a conditional probability with respect to
an axiomatized prior distribution g from a set of distributions M
described by the environment axioms (Item 1c).
Given a particular formalizable hardware (Item la) and formalizable
assumptions about the possibly probabilistic environment (Item 1c),
obviously one can fully axiomatize everything that is needed for proof-
based reasoning.

e) Initial state axioms: Information about how to reconstruct the ini-
tial state s(1) or parts thereof, such that the proof searcher can build
proofs including axioms of the type

/\(PM({E17;22(t) = ‘011011’ | S(tl)) >

(smin(1) = 2z), e.g.: (s7.9(1) =‘010").

Here and in the remainder of the paper we use bold font in formulas
to indicate syntactic place holders (such as m,n,z) for symbol strings
representing variables (such as m,n,z) whose semantics are explained
in the text (in the present context z is the bitstring $p,..(1)).
Note that it is no fundamental problem to fully encode both the hard-
ware description and the initial hardware-describing p within p itself.
To see this, observe that some software may include a program that
can print the software.

f) Utility axioms describing the overall goal in the form of utility func-
tion u; e.g., equation (1) in Section 2.1.

. apply-rule(k, m, n) takes as arguments the index k (if it exists) of an
inference rule such as modus ponens (stored in a list of possible inference
rules encoded within p(1)) and the indices m, n of two previously proven
theorems (numbered in order of their creation) in the current proof. If
applicable, the corresponding inference rule is applied to the addressed
theorems and the resulting theorem appended to proof. Otherwise the
currently tested proof technique is interrupted. This ensures that proof is
never fed with invalid proofs.

. delete-theorem(m) deletes the m-th theorem in the currently stored
proof, thus freeing storage such that proof-storing parts of s can be reused
and the maximal proof size is not necessarily limited by storage con-
straints. Theorems deleted from proof, however, cannot be addressed any
more by apply-rule to produce further prolongations of proof.

. set-switchprog(m,n) replaces switchprog by s, . provided that s? ..
is indeed a non-empty substring of sP, the storage writable by proof tech-
niques.

. state2theorem(m, n) takes two integer arguments m,n and tries to
transform the current contents of s,,., into a theorem of the form
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(smm(t1) = 2), e.g.: (86.9(7775555) = ‘1001"),

where t; represents a time measured (by checking time) shortly after
state2theorem was invoked, and z the bistring $p,.,(t1) (recall the special
case t1 = 1 of Ttem 1le). So we accept the time-labeled current observable
contents of any part of s as a theorem that does not have to be proven in
an alternative way from, say, the initial state s(1), because the computa-
tion so far has already demonstrated that the theorem is true. Thus we
may exploit information conveyed by environmental inputs, and the fact
that sometimes (but not always) the fastest way to determine the output
of a program is to run it.

This non-traditional online interface between syntax and semantics re-
quires special care though. We must avoid inconsistent results through
parts of s that change while being read. For example, the present value
of a quickly changing instruction pointer IP (continually updated by the
hardware) may be essentially unreadable in the sense that the execution
of the reading subroutine itself will already modify IP many times. For
convenience, the (typically limited) hardware could be set up such that it
stores the contents of fast hardware variables every c cycles in a reserved
part of s, such that an appropriate variant of state2theorem() could at least
translate certain recent values of fast variables into theorems. This, how-
ever, will not abolish all problems associated with self-observations. For
example, the s,,., to be read might also contain the reading procedure’s
own, temporary, constantly changing string pointer variables, etc.? To ad-
dress such problems on computers with limited memory, state2theorem
first uses some fixed protocol to check whether the current s,,., is read-
able at all or whether it might change if it were read by the remaining
code of state2theorem. If so, or if m,n, are not in the proper range, then
the instruction has no further effect. Otherwise it appends an observed
theorem of the form (sm:n(t1) = z) to proof. For example, if the current
time is 7770000, then the invocation of state2theorem(6,9) might return
the theorem (s6.9(7775555) = ‘1001’), where 7775555 — 7770000 = 5555
reflects the time needed by state2theorem to perform the initial check and
to read leading bits off the continually increasing time (reading time also

3We see that certain parts of the current s may not be directly observable with-
out changing the observable itself. Sometimes, however, axioms and previous ob-
servations will allow the Godel machine to deduce time-dependent storage contents
that are not directly observable. For instance, by analyzing the code being executed
through instruction pointer IP in the example above, the value of IP at certain times
may be predictable (or postdictable, after the fact). The values of other variables at
given times, however, may not be deducible at all. Such limits of self-observability
are reminiscent of Heisenberg’s celebrated uncertainty principle [12], which states
that certain physical measurements are necessarily imprecise, since the measuring
process affects the measured quantity.
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costs time) such that it can be sure that 7775555 is a recent proper time
label following the start of state2theorem.

6. check() verifies whether the goal of the proof search has been reached.
First it tests whether the last theorem (if any) in proof has the form
of a target theorem. A target theorem states that given the current
axiomatized utility function u (Item 1f), the utility of a switch from p to
the current switchprog would be higher than the utility of continuing the
execution of p (which would keep searching for alternative switchprogs).
Target theorems are symbol strings (encoded in s) of the (decoded) form

(u[s(t1) ® (switchbit(t1) = ‘1"), Env(t1)] >

u[s(t1) @ (switchbit(t1) = ‘0’), Env(t1)]), (2)

where the variable ¢; (represented by syntactic place holder t1) stands
for a time step, while all other symbols belong to the alphabet of the
theorem-proving calculus, that is, the set of possible target theorems is
parameterized only by t;. Here the calculus should permit the notation
s(t1) @ (switchbit(t1) = ‘b’) as a shortcut for the state obtained when we
replace switchbit(ty), the true value of the variable bit switchbit (encoded
in s) at time ¢1, by b € {0,1}. This will facilitate the formulation of theo-
rems that compare values conditioned on various alternative hypothetical
properties of s(¢1). (Note that s(¢1) may be only partially known by the
current proof technique even in environments where s(t1) and switchbit(t;)
are fully predetermined for all valid ¢;.)

The purpose of introducing t; is to deal with hardware-specific temporal
delays that may be involved in checking and switching—it may take a
significant amount of time to match abstract symbol strings found during
proof search to the Gédel machine’s real current state. If a target theo-
rem has been found, check() uses a simple prewired subroutine to check
whether there is enough time left to set variable switchbit (originally 0) to
1 before the continually increasing time will equal ¢;. If this subroutine
returns a negative result, check() exits. Otherwise it sets switchbit := 1
(there is no other way of changing switchbit). Then it repeatedly tests
time until time > t1, to make sure the condition of formula (6) was ful-
filled at ¢1. Then it transfers control to switchprog (there is no other way
of calling switchprog). The switchprog may subsequently rewrite all parts
of s, excluding hardware-reserved parts such as time and x, but including

p.

Note that a proof technique does not necessarily have to compute the true
expected utilities of switching and not switching—it just needs to determine
which is higher. For example, it may be easy to prove that speeding up a
subroutine of the proof searcher by a factor of 2 will certainly be worth the
negligible (compared to lifetime T") time needed to execute the subroutine-
changing algorithm, no matter the precise utility of the switch.
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The axiomatic system A is a defining parameter of a given Gédel machine.
Clearly, A must be strong enough to permit proofs of target theorems. In
particular, the theory of uncertainty axioms (Item 1d) must be sufficiently
rich. This is no fundamental problem: We simply insert all traditional axioms
of probability theory [20].

4 Global Optimality Theorem

Intuitively, at any given time p should execute some self-modification algo-
rithm only if it is the ‘best’ of all possible self-modifications, given the util-
ity function, which typically depends on available resources, such as stor-
age size and remaining lifetime. At first glance, however, target theorem (6)
seems to implicitly talk about just one single modification algorithm, namely,
switchprog(ty) as set by the systematic proof searcher at time ¢;. Isn’t this
type of local search greedy? Couldn’t it lead to a local optimum instead of a
global one? No, it cannot, according to the global optimality theorem:

Theorem 1 (Globally Optimal Self-Changes, given u and A encoded
in p). Given any formalizable utility function u (Item 1f), and assuming con-
sistency of the underlying formal system A, any self-change of p obtained
through execution of some program switchprog identified through the proof of
a target theorem (6) is globally optimal in the following sense: the utility of
starting the execution of the present switchprog is higher than the utility of
waiting for the proof searcher to produce an alternative switchprog later.

Proof. Target theorem (6) implicitly talks about all the other switchprogs that
the proof searcher could produce in the future. To see this, consider the two al-
ternatives of the binary decision: (1) either execute the current switchprog (set
switchbit = 1), or (2) keep searching for proofs and switchprogs (set switchbit
= 0) until the systematic searcher comes up with an even better switchprog.
Obviously the second alternative concerns all (possibly infinitely many) po-
tential switchprogs to be considered later. That is, if the current switchprog
were not the ‘best’, then the proof searcher would not be able to prove that
setting switchbit and executing switchprog will cause higher expected reward
than discarding switchprog, assuming consistency of A. Q.E.D.

4.1 Alternative Relaxed Target Theorem

We may replace the target theorem (6) (Item 6) by the following alternative
target theorem:

(u[s(t1) ® (switchbit(t1) = ‘17), Env(ty)] >

u[s(t1) ® (switchbit(t1) = ‘07), Env(ty)]). (3)
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The only difference to the original target theorem (6) is that the “>” sign
became a “>” sign. That is, the Goédel machine will change itself as soon
as it found a proof that the change will not make things worse. A Global
Optimality Theorem similar to Theorem 1 holds.

5 Bias-Optimal Proof Search (BIOPS)

Here we construct a p(1) that is O()-optimal in a certain limited sense to be
described below, but still might be improved as it is not necessarily optimal in
the sense of the given u (for example, the u of equation (1) neither mentions
nor cares for O()-optimality). Our Bias-Optimal Proof Search (BIOPS) is
essentially an application of Universal Search [23, 25] to proof search. Previous
practical variants and extensions of universal search have been applied [36,
38, 50, 45] to offline program search tasks where the program inputs are
fixed such that the same program always produces the same results. In our
online setting, however, BIOPS has to take into account that the same proof
technique started at different times may yield different proofs, as it may read
parts of s (e.g., inputs) that change as the machine’s life proceeds.

BIOPS starts with a probability distribution P (the initial bias) on the
proof techniques w that one can write in £, e.g., P(w) = K~'(*) for programs
composed from K possible instructions [25]. BIOPS is near-bias-optimal [45]
in the sense that it will not spend much more time on any proof technique
than it deserves, according to its probabilistic bias, namely, not much more
than its probability times the total search time:

Definition 1 (Bias-Optimal Searchers [45]). Let R be a problem class, C
be a search space of solution candidates (where any problem r € R should have
a solution in C), P(q | r) be a task-dependent bias in the form of conditional
probability distributions on the candidates ¢ € C. Suppose that we also have
a predefined procedure that creates and tests any given ¢ on any r € R
within time ¢(q,r) (typically unknown in advance). Then a searcher is n-
bias-optimal (n > 1) if for any mazimal total search time Tiotar > 0 it is
guaranteed to solve any problem r € R if it has a solution p € C satisfying
t(p,r) < P(p|r) Tiotar/n. It is bias-optimal if n = 1.

Method 5.1 (BIOPS) In phase (i = 1,2,3,...) Do: FOR all self-delimiting
[25] proof techniques w € L satisfying P(w) > 27" Do:

1. Run w until halt or error (such as division by zero) or 2! P(w) steps con-
sumed.

2. Undo effects of w on s (does not cost significantly more time than exe-
cuting w).

A proof technique w can interrupt Method 5.1 only by invoking instruction
check() (Item 6), which may transfer control to switchprog (which possibly
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even will delete or rewrite Method 5.1). Since the initial p runs on the formal-
ized hardware, and since proof techniques tested by p can read p and other
parts of s, they can produce proofs concerning the (expected) performance of p
and BIOPS itself. Method 5.1 at least has the optimal order of computational
complexity in the following sense.

Theorem 2. If independently of variable time(s) some unknown fast proof
technique w would require at most f(k) steps to produce a proof of difficulty
measure k (an integer depending on the nature of the task to be solved), then
Method 5.1 will need at most O(f(k)) steps.

Proof. It is easy to see that Method 5.1 will need at most O(f(k)/P(w)) =
O(f(k)) steps—the constant factor 1/P(w) does not depend on k. Q.E.D.

Note again, however, that the proofs themselves may concern quite differ-
ent, arbitrary formalizable notions of optimality (stronger than those express-
ible in the O()-notation) embodied by the given, problem-specific, formalized
utility function w. This may provoke useful, constant-affecting rewrites of the
initial proof searcher despite its limited (yet popular and widely used) notion
of O()-optimality.

5.1 How a Surviving Proof Searcher May Use Bioprs to Solve
Remaining Proof Search Tasks

The following is not essential for this chapter. Let us assume that the execution
of the switchprog corresponding to the first found target theorem has not
rewritten the code of p itself—the current p is still equal to p(1)—and has
reset switchbit and returned control to p such that it can continue where it
was interrupted. In that case the Biops subroutine of p(1) can use the Optimal
Ordered Problem Solver OoPs [45] to accelerate the search for the n-th target
theorem (n > 1) by reusing proof techniques for earlier found target theorems
where possible. The basic ideas are as follows (details: [45]).

Whenever a target theorem has been proven, p(1) freezes the correspond-
ing proof technique: its code becomes non-writable by proof techniques to
be tested in later proof search tasks. But it remains readable, such that it
can be copy-edited and/or invoked as a subprogram by future proof tech-
niques. We also allow prefixes of proof techniques to temporarily rewrite the
probability distribution on their suffixes [45], thus essentially rewriting the
probability-based search procedure (an incremental extension of Method 5.1)
based on previous experience. As a side-effect we metasearch for faster search
procedures, which can greatly accelerate the learning of new tasks [45].

Given a new proof search task, Biops performs O0OPs by spending half the
total search time on a variant of Method 5.1 that searches only among self-
delimiting [24, 6] proof techniques starting with the most recently frozen proof
technique. The rest of the time is spent on fresh proof techniques with arbi-
trary prefixes (which may reuse previously frozen proof techniques though)
[45]. (We could also search for a generalizing proof technique solving all proof
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search tasks so far. In the first half of the search we would not have to test
proof techniques on tasks other than the most recent one, since we already
know that their prefixes solve the previous tasks [45].)

It can be shown that OOPS is essentially 8-bias-optimal (see Def. 1), given
either the initial bias or intermediate biases due to frozen solutions to previ-
ous tasks [45]. This result immediately carries over to Brops. To summarize,
B1oprs essentially allocates part of the total search time for a new task to
proof techniques that exploit previous successful proof techniques in com-
putable ways. If the new task can be solved faster by copy-editing / invoking
previously frozen proof techniques than by solving the new proof search task
from scratch, then Biops will discover this and profit thereof. If not, then at
least it will not be significantly slowed down by the previous solutions—BI10OPS
will remain 8-bias-optimal.

Recall, however, that BIOPS is not the only possible way of initializing the
Godel machine’s proof searcher.

6 Discussion & Additional Relations to Previous Work

Here we list a few examples of possible types of self-improvements (Sect.
6.1), Godel machine applicability to various tasks defined by various utility
functions and environments (Sect. 6.2), probabilistic hardware (Sect. 6.3),
and additional relations to previous work (Sect. 6.4). We also briefly discuss
self-reference and consciousness (Sect. 6.6), and provide a list of answers to
frequently asked questions (Sect. 6.7).

6.1 Possible Types of G6del Machine Self-improvements

Which provably useful self-modifications are possible? There are few limits to
what a G6del machine might do:

1. In one of the simplest cases it might leave its basic proof searcher intact
and just change the ratio of time-sharing between the proof searching sub-
routine and the subpolicy e—those parts of p responsible for interaction
with the environment.

2. Or the Godel machine might modify e only. For example, the initial e
may regularly store limited memories of past events somewhere in s; this
might allow p to derive that it would be useful to modify e such that e
will conduct certain experiments to increase the knowledge about the en-
vironment, and use the resulting information to increase reward intake. In
this sense the Godel machine embodies a principled way of dealing with
the exploration versus exploitation problem [19]. Note that the expected
utility of conducting some experiment may exceed the one of not conduct-
ing it, even when the experimental outcome later suggests to keep acting
in line with the previous e.
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The Godel machine might also modify its very axioms to speed things
up. For example, it might find a proof that the original axioms should be
replaced or augmented by theorems derivable from the original axioms.
The Godel machine might even change its own utility function and tar-
get theorem, but can do so only if their new values are provably better
according to the old ones.

In many cases we do not expect the Godel machine to replace its proof
searcher by code that completely abandons the search for proofs. Instead,
we expect that only certain subroutines of the proof searcher will be sped
up—compare the example at the end of Item 6 in Section 3.1—or that per-
haps just the order of generated proofs will be modified in problem-specific
fashion. This could be done by modifying the probability distribution on
the proof techniques of the initial bias-optimal proof searcher from Section
5.

Generally speaking, the utility of limited rewrites may often be easier to
prove than the one of total rewrites. For example, suppose it is 8:00 PM
and our Godel machine-controlled agent’s permanent goal is to maximize
future expected reward, using the (alternative) target theorem (4.1). Part
thereof is to avoid hunger. There is nothing in its fridge, and shops close
down at 8:30 PM. It does not have time to optimize its way to the su-
permarket in every little detail, but if it does not get going right now it
will stay hungry tonight (in principle such near-future consequences of
actions should be easily provable, possibly even in a way related to how
humans prove advantages of potential actions to themselves). That is, if
the agent’s previous policy did not already include, say, an automatic daily
evening trip to the supermarket, the policy provably should be rewritten
at least limitedly and simply right now, while there is still time, such that
the agent will surely get some food tonight, without affecting less urgent
future behavior that can be optimized/decided later, such as details of the
route to the food, or of tomorrow’s actions.

In certain uninteresting environments reward is maximized by becoming
dumb. For example, a given task may require to repeatedly and forever ex-
ecute the same pleasure center-activating action, as quickly as possible. In
such cases the Godel machine may delete most of its more time-consuming
initial software including the proof searcher.

Note that there is no reason why a Gédel machine should not augment its
own hardware. Suppose its lifetime is known to be 100 years. Given a hard
problem and axioms restricting the possible behaviors of the environment,
the G6del machine might find a proof that its expected cumulative reward
will increase if it invests 10 years into building faster computational hard-
ware, by exploiting the physical resources of its environment.
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6.2 Example Applications

Ezample 1 (Mazimizing expected reward with bounded resources). A robot that
needs at least 1 liter of gasoline per hour interacts with a partially unknown
environment, trying to find hidden, limited gasoline depots to occasionally
refuel its tank. It is rewarded in proportion to its lifetime, and dies after at
most 100 years or as soon as its tank is empty or it falls off a cliff, etc. The
probabilistic environmental reactions are initially unknown but assumed to
be sampled from the axiomatized Speed Prior [41], according to which hard-
to-compute environmental reactions are unlikely. This permits a computable
strategy for making near-optimal predictions [41]. One by-product of maxi-
mizing expected reward is to maximize expected lifetime.

Less general, more traditional examples that do not involve significant in-
teraction with a probabilistic environment are also easily dealt with in the
reward-based framework:

Ezample 2 (Time-limited NP-hard optimization). The initial input to the
Godel machine is the representation of a connected graph with a large number
of nodes linked by edges of various lengths. Within given time 7' it should find
a cyclic path connecting all nodes. The only real-valued reward will occur at
time T. Tt equals 1 divided by the length of the best path found so far (0 if
none was found). There are no other inputs. The by-product of maximizing
expected reward is to find the shortest path findable within the limited time,
given the initial bias.

Ezample 8 (Fast theorem proving). Prove or disprove as quickly as possible
that all even integers > 2 are the sum of two primes (Goldbach’s conjecture).
The reward is 1/t, where t is the time required to produce and verify the first
such proof.

Ezample 4 (Optimize any suboptimal problem solver). Given any formalizable
problem, implement a suboptimal but known problem solver as software on
the Godel machine hardware, and let the proof searcher of Section 5 run in
parallel.

6.3 Probabilistic Godel Machine Hardware

Above we have focused on an example deterministic machine. It is straight-
forward to extend this to computers whose actions are computed in proba-
bilistic fashion, given the current state. Then the expectation calculus used
for probabilistic aspects of the environment simply has to be extended to
the hardware itself, and the mechanism for verifying proofs has to take into
account that there is no such thing as a certain theorem—at best there are
formal statements which are true with such and such probability. In fact, this
may be the most realistic approach as any physical hardware is error-prone,
which should be taken into account by realistic probabilistic Godel machines.
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Probabilistic settings also automatically avoid certain issues of axiomatic
consistency. For example, predictions proven to come true with probability
less than 1.0 do not necessarily cause contradictions even when they do not
match the observations.

6.4 More Relations to Previous Work on Less General
Self-improving Machines

Despite (or maybe because of) the ambitiousness and potential power of self-
improving machines, there has been little work in this vein outside our own
labs at IDSTA and TU Munich. Here we will list essential differences between
the Go6del machine and our previous approaches to ‘learning to learn,” ‘met-
alearning,’ self-improvement, self-optimization, etc.

1. Godel Machine versus Success-Story Algorithm and Other Met-
alearners
A learner’s modifiable components are called its policy. An algorithm that
modifies the policy is a learning algorithm. If the learning algorithm has
modifiable components represented as part of the policy, then we speak of
a self-modifying policy (SMP) [48]. SMPs can modify the way they modify
themselves etc. The Gédel machine has an SMP.
In previous work we used the success-story algorithm (SSA) to force
some (stochastic) SMPs to trigger better and better self-modifications
[35, 49, 48, 50]. During the learner’s life-time, SSA is occasionally called
at times computed according to SMP itself. SSA uses backtracking to
undo those SMP-generated SMP-modifications that have not been em-
pirically observed to trigger lifelong reward accelerations (measured up
until the current SSA call—this evaluates the long-term effects of SMP-
modifications setting the stage for later SMP-modifications). SMP-modifi-
cations that survive SSA represent a lifelong success history. Until the next
SSA call, they build the basis for additional SMP-modifications. Solely by
self-modifications our SMP /SSA-based learners solved a complex task in
a partially observable environment whose state space is far bigger than
most found in the literature [48].
The Goédel machine’s training algorithm is theoretically more powerful
than SSA though. SSA empirically measures the usefulness of previ-
ous self-modifications, and does not necessarily encourage provably op-
timal ones. Similar drawbacks hold for Lenat’s human-assisted, non-
autonomous, self-modifying learner [22], our Meta-Genetic Programming
[32] extending Cramer’s Genetic Programming [8, 1], our metalearning
economies [32] extending Holland’s machine learning economies [15], and
gradient-based metalearners for continuous program spaces of differen-
tiable recurrent neural networks [34, 13]. All these methods, however,
could be used to seed p(1) with an initial policy.
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2. Godel Machine versus Ooprs and OOPS-RL
The Optimal Ordered Problem Solver OoPs [45, 42] (used by BIOPS in
Sect. 5.1) is a bias-optimal (see Def. 1) way of searching for a program that
solves each problem in an ordered sequence of problems of a reasonably
general type, continually organizing and managing and reusing earlier
acquired knowledge. Solomonoff recently also proposed related ideas for
a scientist’s assistant [54] that modifies the probability distribution of
universal search [23] based on experience.
As pointed out earlier [45] (section on OOPs limitations), however, OOPs-
like methods are not directly applicable to general lifelong reinforcement
learning (RL) tasks [19] such as those for which AIXI [16] was designed.
The simple and natural but limited optimality notion of OOPS is bias-
optimality (Def. 1): OOPS is a near-bias-optimal searcher for programs
which compute solutions that one can quickly verify (costs of verification
are taken into account). For example, one can quickly test whether some
currently tested program has computed a solution to the towers of Hanoi
problem used in the earlier paper [45]: one just has to check whether the
third peg is full of disks.
But general RL tasks are harder. Here, in principle, the evaluation of the
value of some behavior consumes the learner’s entire life! That is, the naive
test of whether a program is good or not would consume the entire life.
That is, we could test only one program; afterwards life would be over.
So general RL machines need a more general notion of optimality, and
must do things that plain O0PS does not do, such as predicting future
tasks and rewards. It is possible to use two O0PS -modules as compo-
nents of a rather general reinforcement learner (OOPS-RL), one module
learning a predictive model of the environment, the other one using this
world model to search for an action sequence maximizing expected reward
[45, 44]. Despite the bias-optimality properties of OOPS for certain or-
dered task sequences, however, OOPS-RL is not necessarily the best way
of spending limited computation time in general RL situations.
A provably optimal RL machine must somehow prove properties of oth-
erwise un-testable behaviors (such as: what is the expected reward of this
behavior which one cannot naively test as there is not enough time). That
is part of what the Gédel machine does: It tries to greatly cut testing time,
replacing naive time-consuming tests by much faster proofs of predictable
test outcomes whenever this is possible.
Proof verification itself can be performed very quickly. In particular, ver-
ifying the correctness of a found proof typically does not consume the
remaining life. Hence the Godel machine may use OOPS as a bias-optimal
proof-searching submodule. Since the proofs themselves may concern quite
different, arbitrary notions of optimality (not just bias-optimality), the
Godel machine is more general than plain OOPS. But it is not just an ex-
tension of OOPs. Instead of OOPS it may as well use non-bias-optimal al-
ternative methods to initialize its proof searcher. On the other hand, O0OPS
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is not just a precursor of the Gédel machine. It is a stand-alone, incremen-
tal, bias-optimal way of allocating runtime to programs that reuse previ-
ously successful programs, and is applicable to many traditional problems,
including but not limited to proof search.

Go6del Machine versus AIXI etc.

Unlike Godel machines, Hutter’s recent AIX1 model [16] generally needs
unlimited computational resources per input update. It combines Solo-
monoff’s universal prediction scheme [52, 53] with an ezpectimaz compu-
tation. In discrete cycle k = 1,2,3, ..., action y(k) results in perception
x(k) and reward r(k), both sampled from the unknown (reactive) envi-
ronmental probability distribution p. AIXI defines a mixture distribution
¢ as a weighted sum of distributions v € M, where M is any class of
distributions that includes the true environment p. For example, M may
be a sum of all computable distributions [52, 53], where the sum of the
weights does not exceed 1. In cycle k + 1, AIXI selects as next action
the first in an action sequence maximizing &-predicted reward up to some
given horizon. Recent work [18] demonstrated AIXI ’s optimal use of ob-
servations as follows. The Bayes-optimal policy p¢ based on the mixture
¢ is self-optimizing in the sense that its average utility value converges
asymptotically for all u € M to the optimal value achieved by the (infea-
sible) Bayes-optimal policy p* which knows u in advance. The necessary
condition that M admits self-optimizing policies is also sufficient. Fur-
thermore, p¢ is Pareto-optimal in the sense that there is no other policy
yielding higher or equal value in all environments v € M and a strictly
higher value in at least one [18].

While Aixi clarifies certain theoretical limits of machine learning, it is
computationally intractable, especially when M includes all computable
distributions. This drawback motivated work on the time-bounded, asymp-
totically optimal AIx1(%,]) system [16] and the related HSEARCH [17], both
already discussed in Section 2.4, which also lists the advantages of the
Godel machine. Both methods, however, could be used to seed the Godel
machine with an initial policy.

It is the self-referential aspects of the Godel machine that relieve us of
much of the burden of careful algorithm design required for A1x1(t,l) and
HseARCH. They make the Gédel machine both conceptually simpler and
more general than A1x1(¢,l) and HSEARCH.

6.5 Are Humans Probabilistic Godel Machines?

We

do not know. We think they better be. Their initial underlying formal

system for dealing with uncertainty seems to differ substantially from those
of traditional expectation calculus and logic though—compare Items 1c and
1d in Sect. 3.1 as well as the supermarket example in Sect. 6.1.
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6.6 Godel Machines and Consciousness

In recent years the topic of consciousness has gained some credibility as a
serious research issue, at least in philosophy and neuroscience, e.g., [9]. How-
ever, there is a lack of technical justifications of consciousness: so far nobody
has shown that consciousness is really useful for solving problems, although
problem solving is considered of central importance in philosophy [30].

The fully self-referential Godel machine may be viewed as providing just
such a technical justification. It is “conscious” or “self-aware” in the sense
that its entire behavior is open to self-introspection, and modifiable. It may
“step outside of itself” [14] by executing self-changes that are provably good,
where the proof searcher itself is subject to analysis and change through the
proof techniques it tests. And this type of total self-reference is precisely the
reason for its optimality as a problem solver in the sense of Theorem 1.

6.7 Frequently Asked Questions

In the past half year the author frequently fielded questions about the Godel
machine. Here a list of answers to typical questions.

1. Q: Does the exact business of formal proof search really make sense in the

uncertain real world?
A: Yes, it does. We just need to insert into p(1) the standard axioms for
representing uncertainty and for dealing with probabilistic settings and
expected rewards etc. Compare items 1d and 1lc in Section 3.1, and the
definition of utility as an expected value in equation (1).

2. Q: The target theorem (6) seems to refer only to the very first self-change,

which may completely rewrite the proof-search subroutine—doesn’t this
make the proof of Theorem 1 invalid? What prevents later self-changes
from being destructive?
A: This is fully taken care of. Please look once more at the proof of
Theorem 1, and note that the first self-change will be executed only if it
is provably useful (in the sense of the present untility function u) for all
future self-changes (for which the present self-change is setting the stage).
This is actually the main point of the whole G6del machine set-up.

3. Q (related to the previous item): The Géodel machine implements a meta-
learning behavior: what about a meta-meta, and a meta-meta-meta level?
A: The beautiful thing is that all meta-levels are automatically collapsed
into one: any proof of a target theorem automatically proves that the
corresponding self-modification is good for all further self-modifications
affected by the present one, in recursive fashion.

4. Q: The Gédel machine software can produce only computable mappings
from input sequences to output sequences. What if the environment is non-
computable?

A: Many physicists and other scientists (exceptions: [58, 37]) actually do
assume the real world makes use of all the real numbers, most of which
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are incomputable. Nevertheless, theorems and proofs are just finite symbol
strings, and all treatises of physics contain only computable axioms and
theorems, even when some of the theorems can be interpreted as making
statements about uncountably many objects, such as all the real numbers.
(Note though that the Lowenheim-Skolem Theorem [27, 51] implies that
any first order theory with an uncountable model such as the real numbers
also has a countable model.) Generally speaking, formal descriptions of
non-computable objects do not at all present a fundamental problem—
they may still allow for finding a strategy that provably maximizes utility.
If so, a Godel machine can exploit this. If not, then humans will not have
a fundamental advantage over Godel machines.

Q: Isn’t automated theorem-proving very hard? Current Al systems cannot
prove nontrivial theorems without human intervention at crucial decision
points.

A: More and more important mathematical proofs (four color theorem,
etc.) heavily depend on automated proof search. And traditional theorem
provers do not even make use of our novel notions of proof techniques
and O()-optimal proof search. Of course, some proofs are indeed hard to
find, but here humans and G&del machines face the same fundamental
limitations.

Q: Don’t the “no free lunch theorems” [57] say that it is impossible to
construct universal problem solvers?

A: No, they do not. They refer to the very special case of problems sam-
pled from i.i.d. uniform distributions on finite problem spaces. See the
discussion of no free lunch theorems in an earlier paper [45].

Q: Can’t the Gidel machine switch to a program switchprog that rewrites
the utility function to a “bogus” wutility function that makes unfounded
promises of big rewards in the near future?

A: No, it cannot. It should be obvious that rewrites of the utility function
can happen only if the Gédel machine first can prove that the rewrite is
useful according to the present utility function.

7 Conclusion

The initial software p(1) of our machine runs an initial problem solver, e.g.,
one of Hutter’s approaches [17, 16] which have at least an optimal order of
complexity. Simultaneously, it runs an O()-optimal initial proof searcher us-

ing

an online variant of Universal Search to test proof techniques, which are

programs able to compute proofs concerning the system’s own future perfor-
mance, based on an axiomatic system A encoded in p(1), describing a formal
utility function u, the hardware and p(1) itself. If there is no provably good,
globally optimal way of rewriting p(1) at all, then humans will not find one ei-
ther. But if there is one, then p(1) itself can find and exploit it. This approach
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yields the first class of theoretically sound, fully self-referential, optimally ef-
ficient, general problem solvers.

After the theoretical discussion in Sects. 1 through 5, one practical question
remains: to build a particular, especially practical Godel machine with small
initial constant overhead, which generally useful theorems should one add as
axioms to A (as initial bias) such that the initial searcher does not have to
prove them from scratch?
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Summary. Sequential decision theory formally solves the problem of rational
agents in uncertain worlds if the true environmental prior probability distribution
is known. Solomonoft’s theory of universal induction formally solves the problem
of sequence prediction for unknown prior distribution. We combine both ideas and
get a parameter-free theory of universal Artificial Intelligence. We give strong argu-
ments that the resulting ATXT model is the most intelligent unbiased agent possible.
We outline how the AIXI model can formally solve a number of problem classes, in-
cluding sequence prediction, strategic games, function minimization, reinforcement
and supervised learning. The major drawback of the AIXI model is that it is un-
computable. To overcome this problem, we construct a modified algorithm AIXI¢l
that is still effectively more intelligent than any other time ¢ and length I bounded
agent. The computation time of AIXI# is of the order ¢-2'. The discussion includes
formal definitions of intelligence order relations, the horizon problem and relations
of the AIXI theory to other Al approaches.

1 Introduction

This chapter gives an introduction to a mathematical theory for intelligence.
We present the AIXI model, a parameter-free optimal reinforcement learning
agent embedded in an arbitrary unknown environment.

The science of Artificial Intelligence (AI) may be defined as the construc-
tion of intelligent systems and their analysis. A natural definition of a system
is anything that has an input and an output stream. Intelligence is more
complicated. It can have many faces like creativity, solving problems, pattern
recognition, classification, learning, induction, deduction, building analogies,
optimization, surviving in an environment, language processing, knowledge
and many more. A formal definition incorporating every aspect of intelligence,
however, seems difficult. Most, if not all known facets of intelligence can be
formulated as goal-driven or, more precisely, as maximizing some utility func-
tion. It is, therefore, sufficient to study goal-driven AI; e.g. the (biological)
goal of animals and humans is to survive and spread. The goal of Al systems
should be to be useful to humans. The problem is that, except for special cases,

*This article grew out of the technical report [19] and summarizes and contains
excerpts of the Springer book [30].
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we know neither the utility function nor the environment in which the agent
will operate in advance. The mathematical theory, coined AIXI, is supposed
to solve these problems.

Assume the availability of unlimited computational resources. The first
important observation is that this does not make the AI problem trivial.
Playing chess optimally or solving NP-complete problems become trivial, but
driving a car or surviving in nature don’t. This is because it is a challenge itself
to well-define the latter problems, not to mention presenting an algorithm. In
other words, the AI problem has not yet been well defined. One may view
AIXI as a suggestion for such a mathematical definition of Al

AIXT is a universal theory of sequential decision making akin to Solomo-
noff’s celebrated universal theory of induction. Solomonoff derived an optimal
way of predicting future data, given previous perceptions, provided the data
is sampled from a computable probability distribution. AIXI extends this ap-
proach to an optimal decision making agent embedded in an unknown environ-
ment. The main idea is to replace the unknown environmental distribution p
in the Bellman equations by a suitably generalized universal Solomonoff distri-
bution &. The state space is the space of complete histories. AIXI is a universal
theory without adjustable parameters, making no assumptions about the en-
vironment except that it is sampled from a computable distribution. From an
algorithmic complexity perspective, the AIXI model generalizes optimal pas-
sive universal induction to the case of active agents. From a decision-theoretic
perspective, AIXI is a suggestion of a new (implicit) “learning” algorithm,
which may overcome all (except computational) problems of previous rein-
forcement learning algorithms.

There are strong arguments that AIXI is the most intelligent unbiased
agent possible. We outline for a number of problem classes, including se-
quence prediction, strategic games, function minimization, reinforcement and
supervised learning, how the AIXI model can formally solve them. The major
drawback of the AIXI model is that it is incomputable. To overcome this prob-
lem, we construct a modified algorithm AIXItl that is still effectively more
intelligent than any other time ¢ and length [ bounded agent. The computa-
tion time of AIXI¢#l is of the order ¢-2'. Other discussed topics are a formal
definition of an intelligence order relation, the horizon problem and relations
of the AIXI theory to other AI approaches.

This chapter is meant to be a gentle introduction to and discussion of the
AIXI model. For a mathematically rigorous treatment, many subtleties, and
proofs see the references to the author’s works in the annotated bibliography
section at the end of this chapter, and in particular the book [30]. This section
also provides references to introductory textbooks and original publications
on algorithmic information theory and sequential decision theory.

Section 2 presents the theory of sequential decisions in a very general form
(called Al model) in which actions and perceptions may depend on arbitrary
past events. We clarify the connection to the Bellman equations and discuss
minor parameters including (the size of) the I/O spaces and the lifetime of
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the agent and their universal choice which we have in mind. Optimality of
Alp is obvious by construction.

Section 3: How and in which sense induction is possible at all has been
subject to long philosophical controversies. Highlights are Epicurus’ principle
of multiple explanations, Occam’s razor, and probability theory. Solomonoff
elegantly unified all these aspects into one formal theory of inductive inference
based on a universal probability distribution &, which is closely related to
Kolmogorov complexity K (x), the length of the shortest program computing
z. Rapid convergence of £ to the unknown true environmental distribution pu
and tight loss bounds for arbitrary bounded loss functions and finite alphabet
can be shown. Pareto optimality of £ in the sense that there is no other
predictor that performs better or equal in all environments and strictly better
in at least one can also be shown. In view of these results it is fair to say that
the problem of sequence prediction possesses a universally optimal solution.

Section 4: In the active case, reinforcement learning algorithms are usually
used if p is unknown. They can succeed if the state space is either small or has
effectively been made small by generalization techniques. The algorithms work
only in restricted (e.g. Markovian) domains, have problems with optimally
trading off exploration versus exploitation, have nonoptimal learning rate, are
prone to diverge, or are otherwise ad hoc. The formal solution proposed here
is to generalize Solomonoff’s universal prior £ to include action conditions and
replace p by € in the Al model, resulting in the AI€ =AIXI model, which we
claim to be universally optimal. We investigate what we can expect from a
universally optimal agent and clarify the meanings of universal, optimal, etc.
Other discussed topics are formal definitions of an intelligence order relation,
the horizon problem, and Pareto optimality of AIXI.

Section 5: We show how a number of Al problem classes fit into the gen-
eral AIXI model. They include sequence prediction, strategic games, function
minimization, and supervised learning. We first formulate each problem class
in its natural way (for known p) and then construct a formulation within the
Alp model and show their equivalence. We then consider the consequences of
replacing ¢ by €. The main goal is to understand in which sense the problems
are solved by AIXI.

Section 6: The major drawback of AIXI is that it is incomputable, or more
precisely, only asymptotically computable, which makes an implementation
impossible. To overcome this problem, we construct a modified model AIXI¢l,
which is still superior to any other time ¢ and length [ bounded algorithm.
The computation time of AIXI#l is of the order ¢-2!. The solution requires
an implementation of first-order logic, the definition of a universal Turing
machine within it and a proof theory system.

Section 7: Finally, we discuss and remark on some otherwise unmentioned
topics of general interest. We remark on various topics, including concurrent
actions and perceptions, the choice of the I/O spaces, treatment of encrypted
information, and peculiarities of mortal embodies agents. We continue with an
outlook on further research, including optimality, down-scaling, implementa-



230 Marcus Hutter

tion, approximation, elegance, extra knowledge, and training of/for AIXI(¢l).
We also include some (personal) remarks on non-computable physics, the num-
ber of wisdom {2, and consciousness.

An annotated bibliography concludes this chapter.

2 Agents in Known Probabilistic Environments

The general framework for Al might be viewed as the design and study of
intelligent agents [53]. An agent is a cybernetic system with some internal
state, which acts with output yx on some environment in cycle k, perceives
some input x; from the environment and updates its internal state. Then the
next cycle follows. We split the input x into a regular part oy and a reward
ri, often called reinforcement feedback. From time to time the environment
provides nonzero reward to the agent. The task of the agent is to maximize
its utility, defined as the sum of future rewards. A probabilistic environment
can be described by the conditional probability p for the inputs ...z, to
the agent under the condition that the agent outputs y;...y,. Most, if not
all environments are of this type. We give formal expressions for the outputs
of the agent, which maximize the total p-expected reward sum, called value.
This model is called the Al model. As every Al problem can be brought into
this form, the problem of maximizing utility is hence being formally solved if
1 is known. Furthermore, we study some special aspects of the Aly model. We
introduce factorizable probability distributions describing environments with
independent episodes. They occur in several problem classes studied in Sect. 5
and are a special case of more general separable probability distributions
defined in Sect. 4.3. We also clarify the connection to the Bellman equations of
sequential decision theory and discuss similarities and differences. We discuss
minor parameters of our model, including (the size of) the input and output
spaces X and )Y and the lifetime of the agent, and their universal choice,
which we have in mind. There is nothing remarkable in this section; it is the
essence of sequential decision theory [47, 2, 3, 66], presented in a new form.
Notation and formulas needed in later sections are simply developed. There are
two major remaining problems: the problem of the unknown true probability
distribution pu, which is solved in Sect. 4, and computational aspects, which
are addressed in Sect. 6.

2.1 The Cybernetic Agent Model

A good way to start thinking about intelligent systems is to consider more gen-
erally cybernetic systems, usually called agents in AI. This avoids struggling
with the meaning of intelligence from the very beginning. A cybernetic system
is a control circuit with input y and output x and an internal state. From an
external input and the internal state the agent calculates deterministically or
stochastically an output. This output (action) modifies the environment and
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leads to a new input (perception). This continues ad infinitum or for a finite
number of cycles.

Definition 1 (The Agent Model). An agent is a system that interacts
with an environment in cycles k =1,23,.... In cycle k the action (output)
yr €Y of the agent is determined by a policy p that depends on the I/0O-
history y1x1...yg—12k—1. The environment reacts to this action and leads to
a new perception (input) xp € X determined by a deterministic function q or
probability distribution p, which depends on the history y1x1...Yk—1Tp—1Yk-
Then the next cycle k+1 starts.

As explained in the last section, we need some reward assignment to the
cybernetic system. The input x is divided into two parts, the standard input
o and some reward input r. If input and output are represented by strings,
a deterministic cybernetic system can be modeled by a Turing machine p,
where p is called the policy of the agent, which determines the (re)action to a
perception. If the environment is also computable it might be modeled by a
Turing machine g as well. The interaction of the agent with the environment
can be illustrated as follows:

7“1|01 7"2|02 7"3|O3 7"4|O4 7"5‘05 7"6|06
Agent Environ-
work tape ... work tape ...
P ment q
U Y2 Y3 Ya Ys Ye

Both p as well as ¢ have unidirectional input and output tapes and bidirec-
tional work tapes. What entangles the agent with the environment is the fact
that the upper tape serves as input tape for p, as well as output tape for
g, and that the lower tape serves as output tape for p as well as input tape
for q. Further, the reading head must always be left of the writing head, i.e.
the symbols must first be written before they are read. Both p and ¢ have
their own mutually inaccessible work tapes containing their own “secrets”.
The heads move in the following way. In the k" cycle p writes yi, ¢ reads
Yk, ¢ Writes Ty =710k, p reads Ty =7y0y, followed by the (k+1)*" cycle and
so on. The whole process starts with the first cycle, all heads on tape start
and work tapes being empty. We call Turing machines behaving in this way
chronological Turing machines. Before continuing, some notations on strings
are appropriate.
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2.2 Strings

We denote strings over the alphabet & by s==xj23...2,, with x; € X, where
X is alternatively interpreted as a nonempty subset of IN or itself as a prefix-
free set of binary strings. The length of s is I(s)=1(x1)+...4+1(x,). Analogous
definitions hold for y, € Y. We call 3, the k" input word and 7 the k"
output word (rather than letter). The string s =y1x1...ynZ, represents the
input/output in chronological order. Due to the prefix property of the xzy
and yg, s can be uniquely separated into its words. The words appearing in
strings are always in chronological order. We further introduce the following
abbreviations: € is the empty string, T,.m :=TnTnt1...Tm—1Tm for n<m and €
for n>m. r<p:=x1...xp_1. Analogously for y. Further, yz, :=y,Tn, YTn.m:=
YnTp - YmTm, and so on.

2.3 AI Model for Known Deterministic Environment

Let us define for the chronological Turing machine p a partial function also
named p: X* — Y* with y1., = p(x<k), where y1.x is the output of Turing
machine p on input x.x in cycle k, i.e. where p has read up to zy_; but
no further.! In an analogous way, we define q:Y* — X* with z1., = q(y1:x)-
Conversely, for every partial recursive chronological function we can define a
corresponding chronological Turing machine. Each (agent,environment) pair
(p,q) produces a unique I/O sequence wP?:=yP?z " yb%2b%.... When we look
at the definitions of p and ¢ we see a nice symmetry between the cybernetic
system and the environment. Until now, not much intelligence is in our agent.
Now the credit assignment comes into the game and removes the symmetry
somewhat. We split the input xx € X :=R x O into a regular part o, € O and
a reward 1, € R C IR. We define xy =rior and rp =r(xg). The goal of the
agent should be to maximize received rewards. This is called reinforcement
learning. The reason for the asymmetry is that eventually we (humans) will
be the environment with which the agent will communicate and we want to
dictate what is good and what is wrong, not the other way round. This one-way
learning, the agent learns from the environment, and not conversely, neither
prevents the agent from becoming more intelligent than the environment,
nor does it prevent the environment learning from the agent because the
environment can itself interpret the outputs y; as a regular and a reward
part. The environment is just not forced to learn, whereas the agent is. In
cases where we restrict the reward to two values r e R=1IB:={0,1}, r=11is
interpreted as a positive feedback, called good or correct, and r=0 a negative
feedback, called bad or error. Further, let us restrict for a while the lifetime
(number of cycles) m of the agent to a large but finite value. Let

!Note that a possible additional dependence of p on y< as mentioned in Defi-
nition 1 can be eliminated by recursive substitution; see below. Similarly for q.
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m

vEn = Yo

i=k

be the future total reward (called future utility), the agent p receives from the
environment ¢ in the cycles k to m. It is now natural to call the agent p* that
maximizes Vi, (called total utility), the best one:

p* = arg max Vb = V,f;q >Vt VpyPh = y’:kq (1)
For k=1 the condition on p is nil. For k>1 it states that p shall be consistent
with p* in the sense that they have the same history. If X', J and m are finite,
the number of different behaviors of the agent, i.e. the search space is finite.
Therefore, because we have assumed that ¢ is known, p* can effectively be
determined by pre-analyzing all behaviors. The main reason for restricting to
finite m was not to ensure computability of p* but that the limit m — oo might
not exist. The ease with which we defined and computed the optimal policy
p* is not remarkable. Instead, the (unrealistic) assumption of a completely
known deterministic environment ¢ has trivialized everything.

2.4 AI Model for Known Prior Probability

Let us now weaken our assumptions by replacing the deterministic environ-
ment ¢ with a probability distribution p(g) over chronological functions. Here
1 might be interpreted in two ways. Either the environment itself behaves
stochastically defined by p or the true environment is deterministic, but we
only have subjective (probabilistic) information of which environment is the
true environment. Combinations of both cases are also possible. We assume
here that p is known and describes the true stochastic behavior of the envi-
ronment. The case of unknown p with the agent having some beliefs about
the environment lies at the heart of the AI€ model described in Section 4.

The best or most intelligent agent is now the one that maximizes the ex-
pected utility (called value function) VP =V{":=3" u(q)V}:. This defines the
ATy model.

Definition 2 (The AIu model). The Alu model is the agent with policy
p¥ that mazimizes the p-expected total reward ri+...47ry, i.e. p* =p! =
argmax, V. Its value is V) :zV,f“.

We need the concept of a value function in a slightly more general form.

Definition 3 (The p/true/generating value function). The agent’s per-
ception x consists of a regular observation o € O and a reward r € R C IR.
In cycle k the value V' (yx<y) is defined as the p-expectation of the future

2argmax,V (p) is the p that maximizes V(-). If there is more than one maximum
we might choose the lexicographically smallest one for definiteness.
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reward sum ri+...+7, with actions generated by policy p, and fixed history
yrak. We say that V" (yx<y) is the (future) value of policy p in environment
W given history yx<y, or shorter, the u or true or generating value of p given
yr<y. V=V is the (total) value of p.

We now give a more formal definition for V', Let us assume we are in cycle
k with history yi1...92x—1 and ask for the best output y. Further, let Qk =
{q:q(y<r) =<} be the set of all environments producing the above history.
We say that ge Qk is consistent with history yi<x. The expected reward for
the next m—k+1 cycles (given the above history) is called the value of policy
p and is given by a conditional probability:

quQk M(Q)Vlfri
quQk ng)

Policy p and environment p do not determine history ¢z <, unlike the deter-
ministic case, because the history is no longer deterministically determined by
p and ¢, but depends on p and p and on the outcome of a stochastic process.
Every new cycle adds new information (4;) to the agent. This is indicated
by the dots over the symbols. In cycle k we have to maximize the expected
future rewards, taking into account the information in the history ¢ k. This
information is not already present in p and ¢/u at the agent’s start, unlike in
the deterministic case.

Furthermore, we want to generalize the finite lifetime m to a dynamic
(computable) farsightedness hy =my—k+1>1, called horizon. For my=m we
have our original finite lifetime; for Ay =h the agent maximizes in every cycle
the next h expected rewards. A discussion of the choices for my is delayed to
Sect. 4.5. The next hj rewards are maximized by

Vk%(yhkk) =

(2)

L Pl (s
pr = argmax Vi (gi<y),
PE Py

where Py := {p:3yr : p(Z<k) =Y<ryr} is the set of systems consistent with
the current history. Note that p; depends on k and is used only in step £
to determine gi by pj(Z<k|VU<k)=U<i¥r. After writing g the environment
replies with &, with (conditional) probability (Qxr1)/p(Qx). This proba-
bilistic outcome provides new information to the agent. The cycle k+1 starts
with determining g1 from py,; (which can differ from py for dynamic my)
and so on. Note that p;, implicitly also depends on 7 because P, and Qy
do so. But recursively inserting p; _; and so on, we can define

p (<) = pp(@<klpr_i(@<k-1].--p1))- (3)

It is a chronological function and computable if X', ) and my are finite and
w is computable. For constant m one can show that the policy (3) coincides
with the Al model (Definition 2). This also proves
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Vil'l(yrer) > VP (yz<r) Vp consistent with yx <y, (4)

similarly to (1). For k=1 this is obvious. We also call (3) Alx model. For
deterministic® p this model reduces to the deterministic case discussed in the
last subsection.

It is important to maximize the sum of future rewards and not, for instance,
to be greedy and only maximize the next reward, as is done e.g. in sequence
prediction. For example, let the environment be a sequence of chess games,
and each cycle corresponds to one move. Only at the end of each game is a
positive reward r =1 given to the agent if it won the game (and made no
illegal move). For the agent, maximizing all future rewards means trying to
win as many games in as short as possible time (and avoiding illegal moves).
The same performance is reached if we choose hy much larger than the typical
game lengths. Maximization of only the next reward would be a very bad chess
playing agent. Even if we would make our reward r finer, e.g. by evaluating the
number of chessmen, the agent would play very bad chess for hy =1, indeed.

The Alp model still depends on g and myg; my, is addressed in Section 4.5.
To get our final universal Al model the idea is to replace p by the universal
probability £, defined later. This is motivated by the fact that £ converges
to p in a certain sense for any p. With ¢ instead of g our model no longer
depends on any parameters, so it is truly universal. It remains to show that
it behaves intelligently. But let us continue step by step. In the following we
develop an alternative but equivalent formulation of the Al model. Whereas
the functional form presented above is more suitable for theoretical consider-
ations, especially for the development of a time-bounded version in Sect. 6,
the iterative and recursive formulation of the next subsections will be more
appropriate for the explicit calculations in most of the other sections.

2.5 Probability Distributions

We use Greek letters for probability distributions, and underline their argu-
ments to indicate that they are probability arguments. Let p,(z;...z,) be the
probability that an (infinite) string starts with x;...z,. We drop the index on
p if it is clear from its arguments:

S o) = S o) = puci(@o,) = plac,), ple) = pole) = 1. (5)

TR €X Ty

We also need conditional probabilities derived from the chain rule. We prefer a
notation that preserves the chronological order of the words, in contrast to the
standard notation p(-|-) that flips it. We extend the definition of p to the con-
ditional case with the following convention for its arguments: An underlined
argument x, is a probability variable, and other non-underlined arguments
x), represent conditions. With this convention, the conditional probability has

3We call a probability distribution deterministic if it assumes values 0 and 1 only.
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the form p(z<pz,)=p(z,.,)/p(x_,,). The equation states that the probability
that a string x1...x,—1 is followed by x,, is equal to the probability of x;...x,*
divided by the probability of x;...z,_1%. We use z* as an abbreviation for
‘strings starting with a’.

The introduced notation is also suitable for defining the conditional proba-
bility p(y12;...yn,,) that the environment reacts with z;...x,, under the condi-
tion that the output of the agent is y;...y,. The environment is chronological,
i.e. input x; depends on yz.;y; only. In the probabilistic case this means that
PYT < yK)=>_,, p(yx1.;) is independent of yx, hence a tailing yy in the argu-
ments of p can be dropped. Probability distributions with this property will
be called chronological. The y are always conditions, i.e. are never underlined,
whereas additional conditioning for the x can be obtained with the chain rule:

(y1.,)/p(yz <) and (6)
(yz1) - p(yr1yTs) - oo - P(YT<nYT,,)-

p(yr <nyz,)

=p
p(yxl:n) =p

The second equation is the first equation applied n times.

2.6 Explicit Form of the AIp Model

Let us define the Al model p* in a different way: Let pu(yz<ryz;) be the true
probability of input zj in cycle k, given the history yz<ryr; u(yz,.,) is the
true chronological prior probability that the environment reacts with . if
provided with actions yi.; from the agent. We assume the cybernetic model
depicted on page 231 to be valid. Next we define the value Vk*flﬁm(yxlzk) to be
the p-expected reward sum rg41+...+7y, in cycles k+1 to m with outputs y;
generated by agent p* that maximizes the expected reward sum, and responses
x; from the environment, drawn according to p. Adding r(xg) =7, we get the
reward including cycle k. The probability of x, given yx<ryk, is given by the
conditional probability u(yr<ryz;). So the expected reward sum in cycles k
to m given yx Yy is

Vim(yzary) = Y () + Vit (o)) - plye<iyey,). (7)

Tk

Now we ask how p* chooses yi: It should choose y;, as to maximize the future

rewards. So the expected reward in cycles k to m given yxr.; and yi chosen
by p* is Vb (yr<k) :=maxy, Vb (yr<ryr) (see Figure 1).

km

Together with the induction start

VI (yx1m) = 0, (8)

m—+1,m

V,:T’; is completely defined. We might summarize one cycle into the formula

Vi (yr<k) = HE}XZ[T(%)+Vk*ﬁ1,m(yx1:k)]-u(yx<kyxk)~ 9)

Tk
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Vi (yr<i) = H;aXVk*:L (yr <ry)
k

action yr with max value.

Vi (yx <iyr) =

= Z[Tk +V1:-$-L1,m(y$1:k)]ﬂ(y$<kywk)
Tk

p-expected reward 7y, observation og.

Vk*rl m (YT1:k) =

=max V'l (y&1:kYkt1)
Vit 1

Figure 1 (Expectimax Tree/Algorithm for O=Y=1B)

We introduce a dynamic (computable) farsightedness hy =my—k+1>1, called
horizon. For mj;=m, where m is the lifetime of the agent, we achieve optimal
behavior, for limited farsightedness hy =h (m =my =h+k—1), the agent
maximizes in every cycle the next h expected rewards. A discussion of the
choices for my, is delayed to Sect. 4.5. If my is our horizon function of p* and
YT <k is the actual history in cycle k, the output gy of the agent is explicitly
given by

Uk = arg max Vi (92 <kYk), (10)

which in turn defines the policy p*. Then the environment responds & with
probability u(yi <9ty ). Then cycle k+1 starts. We might unfold the recursion
(9) further and give g nonrecursively as

Uk =Y —argmameaxZ maxz r(wg)F o (T, ) (YT <R YT g, )-

yk+1 Ymy, P

(11)
This has a direct interpretation: The probability of inputs xk.m,, in cycle k
when the agent outputs yg.,,, with actual history gy is p(y& <xyry.,,, ). The
future reward in this case is r(x)+...4+7(zm, ). The best expected reward is
obtained by averaging over the z; (3, ) and maximizing over the y;. This has
to be done in chronological order to correctly incorporate the dependencies
of z; and y; on the history. This is essentially the expectimax algorithm/tree
[46, 53]. The Al model is optimal in the sense that no other policy leads to
higher expected reward. The value for a general policy p can be written in the
form

VP (ywek) = D (Pk+ oo T YT kYT o)y =l ) (12)

T1:m
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As is clear from their interpretations, the iterative environmental probability
w relates to the functional form in the following way:

pyayy) = Y plg) (13)

a:q(Y1:6) =T 1:k
With this identification one can show [19, 30] the following:

Theorem 2 (Equivalence of functional and explicit AI model). The
actions of the functional AI model (3) coincide with the actions of the explicit
(recursive/iterative) AI model (9)-(11) with environments identified by (13).

2.7 Factorizable Environments

Up to now we have made no restrictions on the form of the prior probability
apart from being a chronological probability distribution. On the other hand,
we will see that, in order to prove rigorous reward bounds, the prior probability
must satisfy some separability condition to be defined later. Here we introduce
a very strong form of separability, when pu factorizes into products.

Assume that the cycles are grouped into independent episodes r=1,2,3,...,
where each episode r consists of the cycles k=n,.+1,...,n,41 for some 0=ny<

n<..<ng=n:
s—1

w(yey,) = [[wr@en, im,,,) (14)
r=0

(In the simplest case, when all episodes have the same length [ then n,=r-1).

Then g, depends on p, and x and y of episode r only, with r such that
ny <k<n,41. One can show that

Uk = argrr;aka*ﬁ,ik(y:Qkyk) = argrgaka,*t“ (92 <kyk), (15)
k k

with ¢:=min{mg,n,4+1}. The different episodes are completely independent in
the sense that the inputs xj of different episodes are statistically independent
and depend only on the outputs ¥y, of the same episode. The outputs yi depend
on the x and y of the corresponding episode r only, and are independent of
the actual I/O of the other episodes.

Note that ¢, is also independent of the choice of my, as long as my is
sufficiently large. If all episodes have a length of at most [, i.e. n,+1—n, <l and
if we choose the horizon hy to be at least [, then myp >k+I—1>n,.+1>n,41
and hence ¢t =n,4; independent of my. This means that for factorizable p
there is no problem in taking the limit my — co. Maybe this limit can also be
performed in the more general case of a sufficiently separable . The (problem
of the) choice of my, will be discussed in more detail later.

Although factorizable p are too restrictive to cover all Al problems, they
often occur in practice in the form of repeated problem solving, and hence,
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are worthy of study. For example, if the agent has to play games like chess re-
peatedly, or has to minimize different functions, the different games/functions
might be completely independent, i.e. the environmental probability factor-
izes, where each factor corresponds to a game/function minimization. For
details, see the appropriate sections on strategic games and function mini-
mization.

Further, for factorizable p it is probably easier to derive suitable reward
bounds for the universal AI€ model defined in the next section, than for the
separable cases that will be introduced later. This could be a first step toward
a definition and proof for the general case of separable problems. One goal of
this paragraph was to show that the notion of a factorizable p could be the
first step toward a definition and analysis of the general case of separable p.

2.8 Constants and Limits

We have in mind a universal agent with complex interactions that is at least as
intelligent and complex as a human being. One might think of an agent whose
input yx comes from a digital video camera, and the output x; is some image
to a monitor,* only for the rewards we might restrict to the most primitive
binary ones, i.e. € IB. So we think of the following constant sizes:

1< (l(ypxr)) € k < m <Y xX|
1< 216 < 224 g 232 < 265536

The first two limits say that the actual number k of inputs/outputs should
be reasonably large compared to the typical length (I) of the input/output
words, which itself should be rather sizeable. The last limit expresses the fact
that the total lifetime m (number of I/O cycles) of the agent is far too small
to allow every possible input to occur, or to try every possible output, or to
make use of identically repeated inputs or outputs. We do not expect any
useful outputs for kS(l). More interesting than the lengths of the inputs is
the complexity K(z1...zx) of all inputs until now, to be defined later. The
environment is usually not “perfect.” The agent could either interact with
an imperfect human or tackle a nondeterministic world (due to quantum me-
chanics or chaos).? In either case, the sequence contains some noise, leading
to K(zy...xx) < (I)-k. The complexity of the probability distribution of the
input sequence is something different. We assume that this noisy world oper-
ates according to some simple computable rules. K (u;) < (l)-k, i.e. the rules
of the world can be highly compressed. We may allow environments in which
new aspects appear for k— oo, causing a non-bounded K (uy).

In the following we never use these limits, except when explicitly stated.
In some simpler models and examples the size of the constants will even

“Humans can only simulate a screen as output device by drawing pictures.
SWhether truly stochastic processes exist at all is a difficult question. At least
the quantum indeterminacy comes very close to it.
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violate these limits (e.g. I(xg)=1(yx)=1), but it is the limits above that the
reader should bear in mind. We are only interested in theorems that do not
degenerate under the above limits. In order to avoid cumbersome convergence
and existence considerations we make the following assumptions throughout
this work:

Assumption 3 (Finiteness) We assume that:

the input/perception space X is finite

the output/action space Y is finite

the rewards are nonnegative and bounded i.e. 1, ER C[0,rmaz],
the horizon m is finite

Finite X and bounded R (each separately) ensure existence of p-expectations
but are sometimes needed together. Finite ) ensures that argmaxy,cy|...]
exists, i.e. that maxima are attained, while finite m avoids various technical
and philosophical problems (Sect. 4.5), and positive rewards are needed for
the time-bounded AIXI¢ model (Sect. 6). Many theorems can be generalized
by relaxing some or all of the above finiteness assumptions.

2.9 Sequential Decision Theory

One can relate (9) to the Bellman equations [2] of sequential decision theory
by identifying complete histories yx ) with states, pu(yz<ryz,) with the state
transition matrix, V,; with the value function, and y; with the action in cycle
k [3, 53]. Due to the use of complete histories as state space, the Aly model
neither assumes stationarity, nor the Markov property, nor complete accessi-
bility of the environment. Every state occurs at most once in the lifetime of
the system. For this and other reasons the explicit formulation (11) is more
natural and useful here than to enforce a pseudo-recursive Bellman equation
form.

As we have in mind a universal system with complex interactions, the
action and perception spaces Y and X are huge (e.g. video images), and every
action or perception itself occurs usually only once in the lifespan m of the
agent. As there is no (obvious) universal similarity relation on the state space,
an effective reduction of its size is impossible, but there is no principle problem
in determining yx from (11) as long as u is known and computable, and X, )
and m are finite.

Things drastically change if p is unknown. Reinforcement learning algo-
rithms [31, 66, 3] are commonly used in this case to learn the unknown u
or directly its value. They succeed if the state space is either small or has
effectively been made small by generalization or function approximation tech-
niques. In any case, the solutions are either ad hoc, work in restricted domains
only, have serious problems with state space exploration versus exploitation,
or are prone to diverge, or have nonoptimal learning rates. There is no uni-
versal and optimal solution to this problem so far. The central theme of this
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article is to present a new model and argue that it formally solves all these
problems in an optimal way. The true probability distribution g will not be
learned directly, but will be replaced by some generalized universal prior &,
which converges to p.

3 Universal Sequence Prediction

This section deals with the question of how to make predictions in unknown
environments. Following a brief description of important philosophical atti-
tudes regarding inductive reasoning and inference, we describe more accu-
rately what we mean by induction, and explain why we can focus on sequence
prediction tasks. The most important concept is Occam’s razor (simplicity)
principle. Indeed, one can show that the best way to make predictions is based
on the shortest (= simplest) description of the data sequence seen so far. The
most general effective descriptions can be obtained with the help of general
recursive functions, or equivalently by using programs on Turing machines, es-
pecially on the universal Turing machine. The length of the shortest program
describing the data is called the Kolmogorov complexity of the data. Proba-
bility theory is needed to deal with uncertainty. The environment may be a
stochastic process (e.g. gambling houses or quantum physics) that can be de-
scribed by “objective” probabilities. But also uncertain knowledge about the
environment, which leads to beliefs about it, can be modeled by “subjective”
probabilities. The old question left open by subjectivists of how to choose
the a priori probabilities is solved by Solomonoff’s universal prior, which is
closely related to Kolmogorov complexity. Solomonoff’s major result is that
the universal (subjective) posterior converges to the true (objective) environ-
ment(al probability) u. The only assumption on p is that p (which needs not
be known!) is computable. The problem of the unknown environment g is
hence solved for all problems of inductive type, like sequence prediction and
classification.

3.1 Introduction

An important and highly nontrivial aspect of intelligence is inductive infer-
ence. Simply speaking, induction is the process of predicting the future from
the past, or more precisely, it is the process of finding rules in (past) data and
using these rules to guess future data. Weather or stock-market forecasting, or
continuing number series in an IQ test are nontrivial examples. Making good
predictions plays a central role in natural and artificial intelligence in general,
and in machine learning in particular. All induction problems can be phrased
as sequence prediction tasks. This is, for instance, obvious for time-series pre-
diction, but also includes classification tasks. Having observed data x; at times
t <n, the task is to predict the n** symbol z,, from sequence ...z, 1. This
prequential approach [13] skips over the intermediate step of learning a model
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based on observed data x;...x,—1 and then using this model to predict z,,. The
prequential approach avoids problems of model consistency, how to separate
noise from useful data, and many other issues. The goal is to make “good” pre-
dictions, where the prediction quality is usually measured by a loss function,
which shall be minimized. The key concept to well-define and solve induction
problems is Occam’s razor (simplicity) principle, which says that “ Entities
should not be multiplied beyond necessity,” which may be interpreted as to
keep the simplest theory consistent with the observations x;...x,,—1 and to use
this theory to predict z,,. Before we can present Solomonoff’s formal solution,
we have to quantify Occam’s razor in terms of Kolmogorov complexity, and
introduce the notion of subjective/objective probabilities.

3.2 Algorithmic Information Theory

Intuitively, a string is simple if it can be described in a few words, like “the
string of one million ones,” and is complex if there is no such short description,
like for a random string whose shortest description is specifying it bit by bit.
We can restrict the discussion to binary strings, since for other (non-stringy
mathematical) objects we may assume some default coding as binary strings.
Furthermore, we are only interested in effective descriptions, and hence restrict
decoders to be Turing machines. Let us choose some universal (so-called prefix)
Turing machine U with unidirectional binary input and output tapes and a
bidirectional work tape [42, 30]. We can then define the (conditional) prefiz
Kolmogorov complexity [5, 17, 33, 38] of a binary string = as the length I of
the shortest program p, for which U outputs the binary string x (given y).

Definition 4 (Kolmogorov complexity). Let U be a universal prefiz Tur-
ing machine U. The (conditional) prefix Kolmogorov complexity is defined as
the shortest program p, for which U outputs x (given y):

K(z) = m}}n{l(p):U(p)=x}, K(zly) = mgn{l(p):U(y,p)=x}

Simple strings like 000...0 can be generated by short programs, and hence
have low Kolmogorov complexity, but irregular (e.g. random) strings are their
own shortest description, and hence have high Kolmogorov complexity. An
important property of K is that it is nearly independent of the choice of U.
Furthermore, it shares many properties with Shannon’s entropy (information
measure) S, but K is superior to S in many respects. To be brief, K is
an excellent universal complexity measure, suitable for quantifying Occam’s
razor. There is (only) one severe disadvantage: K is not finitely computable.
The major algorithmic property of K is that it is (only) co-enumerable, i.e.
it is approximable from above.

For general (non-string) objects one can specify some default coding ()
and define K (object) := K ({object)), especially for numbers and pairs, e.g.
we abbreviate K (z,y):= K ({z,y)). The most important information-theoretic
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properties of K are listed below, where we abbreviate f(x)
+
f(z)<g(x). We also later abbreviate f(x)=0(g(x)) by f(z)

9(x)+0(1) by

Theorem 4 (Information properties of Kolmogorov complexity).

<
X
<y

+ +
1) K(z) < l(z)+2logl(x), K(n) < logn+2loglogn.
i) 3,27 K@ <1, K(z) > I(z) for ‘most’z, K(n)—oc for n—ooc.

i) K(aly) < K(z) < K(xy).

i) K(zy) < K@)+K(y),  Kay) < K(@)+K(@).
) Kl K0) e ) £ K(ry) £ K(ya) £ K(yleK (@) +K ().

vi) K(f(x )) K(2)+K(f) if f:IB*—IB* is recursive/computable.
vit)K (2) < —logyP(x)+K(P) if P:IB* —[0,1] is recursive and ", P(x) <1

All (in)equalities remain valid if K is (further) conditioned under some z, i.e.
K(.)~ K(...]z) and K(...]y)~ K(...|y,z). Those stated are all valid within
an additive constant of size O(1), but there are others which are only valid to
logarithmic accuracy. K has many properties in common with Shannon en-
tropy as it should be, since both measure the information content of a string.
Property (i) gives an upper bound on K, and property (i¢) is Kraft’s inequal-
ity which implies a lower bound on K valid for ‘most’ n, where ‘most’ means
that there are only o(N) exceptions for n€{1,...,N}. Providing side informa-
tion y can never increase code length, requiring extra information y can never
decrease code length (iii). Coding x and y separately never helps (iv), and
transforming x does not increase its information content (vi). Property (vi)
also shows that if x codes some object o, switching from one coding scheme
to another by means of a recursive bijection leaves K unchanged within ad-
ditive O(1) terms. The first nontrivial result is the symmetry of information
(v), which is the analogue of the multiplication/chain rule for conditional
probabilities. Property (vii) is at the heart of the MDL principle [52], which
approximates K (z) by —log, P(x)+K(P). See [42] for proofs.

3.3 Uncertainty & Probabilities

For the objectivist probabilities are real aspects of the world. The outcome
of an observation or an experiment is not deterministic, but involves phys-
ical random processes. Kolmogorov’s axioms of probability theory formalize
the properties that probabilities should have. In the case of i.i.d. experiments
the probabilities assigned to events can be interpreted as limiting frequencies
(frequentist view), but applications are not limited to this case. Conditional-
izing probabilities and Bayes’ rule are the major tools in computing posterior
probabilities from prior ones. For instance, given the initial binary sequence
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T1...Tn—1, what is the probability of the next bit being 17 The probability of
observing z,, at time n, given past observations z...z,_1 can be computed
with the multiplication or chain rule® if the true generating distribution u of
the sequences zx2x3... is known: p(rcnz,)=pw(2.,)/(z,) (see Sects. 2.2
and 2.5). The problem, however, is that one often does not know the true
distribution p (e.g. in the cases of weather and stock-market forecasting).

The subjectivist uses probabilities to characterize an agent’s degree of belief
in (or plausibility of) something, rather than to characterize physical random
processes. This is the most relevant interpretation of probabilities in Al. It
is somewhat surprising that plausibilities can be shown to also respect Kol-
mogorov’s axioms of probability and the chain rule for conditional probabili-
ties by assuming only a few plausible qualitative rules they should follow [10].
Hence, if the plausibility of x1.,, is £(x;.,,), the degree of belief in z,, given .y,
is, again, given by the conditional probability: {(z<n®,)=¢&(z1.,)/{(2<,)-

The the chain rule allows determining posterior probabilities/plausibilities
from prior ones, but leaves open the question of how to determine the pri-
ors themselves. In statistical physics, the principle of indifference (symmetry
principle) and the maximum entropy principle can often be exploited to deter-
mine prior probabilities, but only Occam’s razor is general enough to assign
prior probabilities in every situation, especially to cope with complex domains
typical for Al

3.4 Algorithmic Probability & Universal Induction

Occam’s razor (appropriately interpreted and in compromise with Epicurus’
principle of indifference) tells us to assign high/low a priori plausibility to
simple/complex strings . Using K as the complexity measure, any monotone
decreasing function of K, e.g. £(x) =25 would satisfy this criterion. But &
also has to satisfy the probability axioms, so we have to be a bit more careful.
Solomonoff [61, 62] defined the universal prior £(z) as the probability that
the output of a universal Turing machine U starts with  when provided with
fair coin flips on the input tape. Formally, £ can be defined as

§z) = > 271 > 7K@, (16)

p: Up)=ax

where the sum is over all (so-called minimal) programs p for which U outputs
a string starting with x. The inequality follows by dropping all terms in Zp
except for the shortest p computing x. Strictly speaking £ is only a semimea-
sure since it is not normalized to 1, but this is acceptable/correctable. We
derive the following bound:

oo

(1—f($<t$t))2 < _%Zln§($<tmt) = _élnf(mlzoo) < éln2'K($1:oo)'
t=1 t=1

5Strictly speaking it is just the definition of conditional probabilities.
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In the first inequality we have used (1—a)?<— élna for 0<a<1. In the equal-
ity we exchanged the sum with the logarithm and eliminated the resulting
product by the chain rule (6). In the last inequality we used (16). If z1.c i
a computable sequence, then K(z1..) is finite, which implies £(z<iz,) — 1
(372 (1—at)? <oo=a;—1). This means, that if the environment is a com-
putable sequence (whichsoever, e.g. the digits of 7 or e in binary representa-
tion), after having seen the first few digits, £ correctly predicts the next digit
with high probability, i.e. it recognizes the structure of the sequence.
Assume now that the true sequence is drawn from the distribution p, i.e.
the true (objective) probability of 1., is u(zy.,), but p is unknown. How is
the posterior (subjective) belief &(z<pz,)=&(z,)/{(x,,) related to the true
(objective) posterior probability p(x<nx,,)? Solomonoff’s [62] crucial result is
that the posterior (subjective) beliefs converge to the true (objective) posterior
probabilities, if the latter are computable. More precisely, he showed that

S nea) () —paa0) £ Jm2K. (7)

t=1 x4

K (u) is finite if p is computable, but the infinite sum on the L.h.s. can only
be finite if the difference &(z<+0)—p(x<:0) tends to zero for t — oo with p-
probability 1. This shows that using £ as an estimate for g may be a reasonable
thing to do.

3.5 Loss Bounds & Pareto Optimality

Most predictions are eventually used as a basis for some decision or action,
which itself leads to some reward or loss. Let £;,,, €[0,1] C IR be the re-
ceived loss when performing prediction/decision/action y; €Y and z; € X' is
the t** symbol of the sequence. Let y{! €Y be the prediction of a (causal)
prediction scheme A. The true probability of the next symbol being z;, given
Tty 18 p(x<txy). The expected loss when predicting y, is E[¢,,,,]. The total
u-expected loss suffered by the A scheme in the first n predictions is

t=1

t=1z1.,€X?

For instance, for the error-loss l,, =1 if z=y and 0 else, Lﬁ is the expected
number of prediction errors, which we denote by E/\. The goal is to minimize
the expected loss. More generally, we define the A, sequence prediction scheme
(later also called SPp) yi'» :=argming, ey, p(r<i;)ls,y, Which minimizes
the p-expected loss. If 1 is known, A,, is obviously the best prediction scheme
in the sense of achieving minimal expected loss (L» < LA for any A). One
can prove the following loss bound for the universal A¢ predictor [21, 20, 27]

0 < LA — LM% < 22 K(p)+ 2/ LM% In2- K (p). (19)
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Together with L,, <n this shows that ! La¢— ! L4« =O(n=1/2), i.e. asymp-
totically A¢ achieves the optimal average loss of A, with rapid convergence.
Moreover L4¢ is finite if L4# is finite and LA¢/LA« — 1 if L4 is not fi-
nite. Bound (19) also implies L2 > LA« —2,/LA¢<In2- K (1), which shows that
no (causal) predictor A whatsoever achieves significantly less (expected) loss
than A¢. In view of these results it is fair to say that, ignoring computational
issues, the problem of sequence prediction has been solved in a universal way.

A different kind of optimality is Pareto optimality. The universal prior &
is Pareto optimal in the sense that there is no other predictor that leads to
equal or smaller loss in all environments. Any improvement achieved by some
predictor A over A¢ in some environments is balanced by a deterioration in
other environments [29].

4 The Universal Algorithmic Agent AIXI

Active systems, like game playing (SG) and optimization (FM), cannot be
reduced to induction systems. The main idea of this work is to generalize
universal induction to the general agent model described in Sect. 2. For this, we
generalize £ to include actions as conditions and replace p by £ in the rational
agent model, resulting in the AI£(=AIXI) model. In this way the problem
that the true prior probability p is usually unknown is solved. Convergence
of £ — p can be shown, indicating that the AI£ model could behave optimally
in any computable but unknown environment with reinforcement feedback.

The main focus of this section is to investigate what we can expect from
a universally optimal agent and to clarify the meanings of universal, optimal,
etc. Unfortunately bounds similar to the loss bound (19) in the SP case can
hold for no active agent. This forces us to lower our expectation about univer-
sally optimal agents and to introduce other (weaker) performance measures.
Finally, we show that AI{ is Pareto optimal in the sense that there is no other
policy yielding higher or equal value in all environments and a strictly higher
value in at least one.

4.1 The Universal AI¢ Model

Definition of the AI{ model. We have developed enough formalism to
suggest our universal AI¢ model. All we have to do is to suitably generalize
the universal semimeasure ¢ from the last section and replace the true but
unknown prior probability ! in the Al model by this generalized 21, In
what sense this AI£ model is universal will be discussed subsequently.

In the functional formulation we define the universal probability £A! of an
environment ¢ just as 2~49):

£(q) = 27'@.
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The definition could not be easier”!® Collecting the formulas of Sect. 2.4 and
replacing p(q) by &(q) we get the definition of the AI{ agent in functional
form. Given the history gi<j the policy p¢ of the functional AI¢ agent is
given by

e —1(q) Pq

L i= argmax max 2 -V 20
Y 8 Ye pip(E<k)=Y<k¥r ,Zi_ km ( )
:q(Y<r)=T <k
in cycle k, where V/fqik is the total reward of cycles k to m; when agent p
interacts with environment g. We have dropped the denominator . 1(q) from

(2) as it is independent of the pEPk and a constant multiplicative factor does
not change argmaxy, .

For the iterative formulation, the universal probability £ can be obtained
by inserting the functional £(q) into (13):

lywrg) = 3 270, (21)

¢:q(y1:x)=21:k

Replacing p with £ in (11) the iterative AI€ agent outputs

Uk =15 —argmaXZgg)fZ ma@@Z (@) + o7 (T ) - G <k YT,
'r”.k.

(22)
in cycle k given the history y2 <.

The equivalence of the functional and iterative ATl model (Theorem 2) is
true for every chronological semimeasure p, especially for &, hence we can talk
about the AI€ model in this respect. It (slightly) depends on the choice of the
universal Turing machine. [({q)) is defined only up to an additive constant.
The AI€ model also depends on the choice of XY =R x O and Y, but we do not
expect any bias when the spaces are chosen sufficiently simple, e.g. all strings
of length 216, Choosing IN as the word space would be ideal, but whether the
maxima (suprema) exist in this case, has to be shown beforehand. The only
nontrivial dependence is on the horizon function mj which will be discussed
later. So apart from mj and unimportant details the AI£ agent is uniquely
defined by (20) or (22). It does not depend on any assumption about the
environment apart from being generated by some computable (but unknown!)
probability distribution.

Convergence of ¢ to p. Similarly to (17) one can show that the p-expected
squared difference of p and £ is finite for computable p. This, in turn, shows

"It is not necessary to use 2~ %@ or something similar, as some readers may ex-

pect, at this point, because for every program ¢ there exists a functionally equivalent
U F s

program ¢ with K(q) =1(g).

8Here and later we identify objects with their coding relative to some fixed Turing
machine U. For example, if ¢ is a function K(q):= K ({¢q)) with (g) being a binary
coding of ¢ such that U({q),y) =q(y). Reversely, if ¢ already is a binary string we
define ¢(y):=U(q,y)-
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that {(yx<pyz),) converges rapidly to u(yr<ryz;,) for k— oo with u-probability
1. The line of reasoning is the same; the y are pure spectators. This will change
when we analyze loss/reward bounds analogous to (19). More generally, one
can show [30] that®

k—oo
f(yx<kyxk:mk) - M(@/x<ki‘/xk;mk)~ (23)

This gives hope that the outputs g of the AI£ model (22) could converge to
the outputs ¢ from the Aly model (11).

We want to call an Al model universal, if it is p-independent (unbiased,
model-free) and is able to solve any solvable problem and learn any learnable
task. Further, we call a universal model, universally optimal, if there is no
program, which can solve or learn significantly faster (in terms of interaction
cycles). Indeed, the AI model is parameter free, £ converges to p (23), the
Alp model is itself optimal, and we expect no other model to converge faster
to Alu by analogy to SP (19):

Claim (We expect AIXI to be universally optimal).

This is our main claim. In a sense, the intention of the remaining sections is
to define this statement more rigorously and to give further support.

Intelligence order relation. We define the £-expected reward in cycles k to
m of a policy p similar to (2) and (20). We extend the definition to programs
p¢ P, that are not consistent with the current history.

. 1 _ 5
VinGiar) = o D> 2@V (24)

4:q(Y<r)=T<k

The normalization N is again only necessary for interpreting Vi, as the ex-
pected reward but is otherwise unneeded. For consistent policies p € P, we
define p:=p. For pgsz, p is a modification of p in such a way that its outputs
are consistent with the current history y& .y, hence pe Pk, but unaltered for
the current and future cycles > k. Using this definition of Vj,, we could take
the maximium over all policies p in (20), rather than only the consistent ones.

Definition 5 (Intelligence order relation). We call a policy p more or
equally intelligent than p’ and write

prp e VEYgEcy: VES (diar) = VES (ddk).

kmy,

i.e. if p yields in any circumstance higher &-expected reward than p'.

As the algorithm p* behind the AI¢ agent maximizes Vkp,flk we have p¢ >=p for
all p. The AI¢ model is hence the most intelligent agent w.r.t. >=. Relation

9Here, and everywhere else, with &, — i, we mean &, —pr — 0, and not that g
(and &) itself converge to a limiting value.
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> is a universal order relation in the sense that it is free of any parameters
(except my) or specific assumptions about the environment. A proof, that
> is a reliable intelligence order (which we believe to be true), would prove
that AI¢ is universally optimal. We could further ask: How useful is > for
ordering policies of practical interest with intermediate intelligence, or how can
> help to guide toward constructing more intelligent systems with reasonable
computation time? An effective intelligence order relation =¢ will be defined
in Sect. 6, which is more useful from a practical point of view.

4.2 On the Optimality of AIXI

In this section we outline ways toward an optimality proof of AIXI. Sources
of inspiration are the SP loss bounds proven in Sect. 3 and optimality criteria
from the adaptive control literature (mainly) for linear systems [34]. The value
bounds for AIXI are expected to be, in a sense, weaker than the SP loss bounds
because the problem class covered by AIXI is much larger than the class of
induction problems. Convergence of £ to p has already been proven, but is
not sufficient to establish convergence of the behavior of the AIXI model to
the behavior of the Al model. We will focus on three approaches toward a
general optimality proof:

The meaning of “universal optimality”. The first step is to investigate
what we can expect from AIXI, i.e. what is meant by universal optimality. A
“learner” (like AIXI) may converge to the optimal informed decision-maker
(like Alu) in several senses. Possibly relevant concepts from statistics are:
consistency, self-tunability, self-optimization, efficiency, unbiasedness, asymp-
totic or finite convergence [34], Pareto optimality, and some more defined in
Sect. 4.3. Some concepts are stronger than necessary, others are weaker than
desirable but suitable to start with. Self-optimization is defined as the asymp-

totic convergence of the average true value ﬁl le:z” of AI¢ to the optimal value
,;vf;ﬁj. Apart from convergence speed, self-optimization of AIXI would most
closely correspond to the loss bounds proven for SP. We investigate which
properties are desirable and under which circumstances the AIXI model sat-
isfies these properties. We will show that no universal model, including AIXI,
can in general be self-optimizing. Conversely, we show that AIXI is Pareto
optimal in the sense that there is no other policy that performs better or
equal in all environments, and strictly better in at least one.

Limited environmental classes. The problem of defining and proving gen-
eral value bounds becomes more feasible by considering, in a first step, re-
stricted concept classes. We analyze AIXI for known classes (like Markovian
or factorizable environments) and especially for the new classes (forgetful,
relevant, asymptotically learnable, farsighted, uniform, pseudo-passive, and
passive) defined later in Sect. 4.3. In Sect. 5 we study the behavior of AIXI
in various standard problem classes, including sequence prediction, strategic
games, function minimization, and supervised learning.
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Generalization of AIXI to general Bayes mixtures. The other approach
is to generalize AIXI to AI(, where ()=, w, V() is a general Bayes mix-
ture of distributions v in some class M. If M is the multi-set of enumerable
semimeasures enumerated by a Turing machine, then AIC coincides with AIXI.
If M is the (multi)set of passive effective environments, then AIXI reduces
to the A¢ predictor that has been shown to perform well. One can show that
these loss/value bounds generalize to wider classes, at least asymptotically
[26]. Promising classes are, again, the ones described in Sect. 4.3. In partic-
ular, for ergodic MDPs we showed that AI( is self-optimizing. Obviously, the
least we must demand from M to have a chance of finding a self-optimizing
policy is that there exists some self-optimizing policy at all. The key result in
[26] is that this necessary condition is also sufficient. More generally, the key is
not to prove absolute results for specific problem classes, but to prove relative
results of the form “if there exists a policy with certain desirable properties,
then AI(C also possesses these desirable properties.” If there are tasks that can-
not be solved by any policy, AI( cannot be blamed for failing. Environmental
classes that allow for self-optimizing policies include bandits, i.i.d. processes,
classification tasks, certain classes of POMDPs, k**-order ergodic MDPs, fac-
torizable environments, repeated games, and prediction problems. Note that
in this approach we have for each environmental class a corresponding model
AI(, whereas in the approach pursued in this article the same universal AIXI
model is analyzed for all environmental classes.

Optimality by construction. A possible further approach toward an op-
timality “proof” is to regard AIXI as optimal by construction. This perspec-
tive is common in various (simpler) settings. For instance, in bandit prob-
lems, where pulling arm i leads to reward 1 (0) with unknown probability p;
(1—p;), the traditional Bayesian solution to the uncertainty about p; is to
assume a uniform (or Beta) prior over p; and to maximize the (subjectively)
expected reward sum over multiple trials. The exact solution (in terms of
Gittins indices) is widely regarded as “optimal”, although justified alterna-
tive approaches exist. Similarly, but simpler, assuming a uniform subjective
prior over the Bernoulli parameter p(; € [0,1], one arrives at the reasonable,
but more controversial, Laplace rule for predicting i.i.d. sequences. AIXI is
similar in the sense that the unknown p€ M is the analogue of the unknown
p€[0,1], and the prior beliefs w, =2~5®) justified by Occam’s razor are the
analogue of a uniform distribution over [0,1]. In the same sense as Gittins’ so-
lution to the bandit problem and Laplace’ rule for Bernoulli sequences, AIXI
may also be regarded as optimal by construction. Theorems relating AIXI
to Al would not be regarded as optimality proofs of AIXI, but just as how
much harder it becomes to operate when p is unknown, i.e. the achievements
of the first three approaches are simply reinterpreted.
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4.3 Value Bounds and Separability Concepts

Introduction. The values Vj,, associated with the AI systems correspond
roughly to the negative loss —L# of the SP systems. In SP, we were interested
in small bounds for the loss excess LA¢— LA, Unfortunately, simple value
bounds for AI¢ in terms of Vi, analogous to the loss bound (19) do not
hold. We even have difficulties in specifying what we can expect to hold for
AI¢ or any Al system that claims to be universally optimal. Consequently, we
cannot have a proof if we don’t know what to prove. In SP, the only important
property of u for proving loss bounds was its complexity K (u). We will see that
in the AI case, there are no useful bounds in terms of K (u) only. We either
have to study restricted problem classes or consider bounds depending on
other properties of u, rather than on its complexity only. In the following, we
will exhibit the difficulties by two examples and introduce concepts that may
be useful for proving value bounds. Despite the difficulties in even claiming
useful value bounds, we nevertheless, firmly believe that the order relation
(Definition 5) correctly formalizes the intuitive meaning of intelligence and,
hence, that the AI{ agent is universally optimal.

(Pseudo) Passive p and the HeavenHell example. In the following we
choose my =m. We want to compare the true, i.e. y-expected value V/, of
a p-independent universal policy p®®*! with any other policy p. Naively, we
might expect the existence of a policy p?®** that maximizes VI, apart from
additive corrections of lower order for m— oco:

best

Vin "= Vig —o(.) Vu,p (25)

Such policies are sometimes called self-optimizing [34]. Note that V. / >
VPR p, but p* is not a candidate for (a universal) pPest as it depends on
. On the other hand, the policy p¢ of the AI¢ agent maximizes me by def-
inition (p* = p). As me is thought to be a guess of V{, . we might expect

pbest = p& to approximately maximize Vi, ie. (25) to hold. Let us consider

mo
the problem class (set of environments) M ={pug,u1} with Y=R={0,1} and
Ty, =0iy, in environment p;, where the Kronecker symbol 4, is defined as 1
for x=vy and 0 otherwise. The first action y; decides whether you go to heaven
with all future rewards 7, being 1 (good) or to hell with all future rewards
being 0 (bad). Note that y; are (deterministic, non-ergodic) MDPs:

i ) =1

y=1

A
tary =1 Eeave&

It is clear that if p;, i.e. ¢ is known, the optimal policy p#' is to output y1 =1
in the first cycle with Vf:;;“ =m. On the other hand, any unbiased policy p®¢*!
independent of the actual p either outputs y; =1 or y; =0. Independent of the
actual choice y1, there is always an environment (u = p1_,,) for which this
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choice is catastrophic (le,:StM =0). No single agent can perform well in both
environments 9 and p1. The r.h.s. of (25) equals m—o(m) for p=p#. For all
pbest there is a p for which the Lh.s. is zero. We have shown that no p®®** can
satisfy (25) for all 4 and p, so we cannot expect p¢ to do so. Nevertheless, there
are problem classes for which (25) holds, for instance SP. For SP, (25) is just a
reformulation of (19) with an appropriate choice for p*¢*!, namely A¢ (which
differs from p¢, see next section). We expect (25) to hold for all inductive
problems in which the environment is not influenced!® by the output of the
agent. We want to call these u, passive or inductive environments. Further,
we want to call M and p € M satisfying (25) with p®®* =p¢ pseudo-passive.
So we expect inductive p to be pseudo-passive.

The OnlyOne example. Let us give a further example to demonstrate the
difficulties in establishing value bounds. Let X =R ={0,1} and || be large.
We consider all (deterministic) environments in which a single complex output
y* is correct (r=1) and all others are wrong (r=0). The problem class M is

defined by

M= {pyy* €Y, K(y*) = log|V||}, where py-(yrcpyrl) := 0y, Vk.

There are N = || such y*. The only way a u-independent policy p can find the
correct y*, is by trying one y after the other in a certain order. In the first N—1
cycles, at most IV —1 different y are tested. As there are N different possible
y*, there is always a pu € M for which p gives erroneous outputs in the first
N —1 cycles. The number of errors is EP, >N —1=|Y| =25 Z oK) for this
1. As this is true for any p, it is also true for the AI€ model, hence E,’f <2K M)
is the best possible error bound we can expect that depends on K (u) only.
Actually, we will derive such a bound in Sect. 5.1 for inductive environments.
Unfortunately, as we are mainly interested in the cycle region k< |Y| Z oK)
(see Sect. 2.8) this bound is vacuous. There are no interesting bounds for
deterministic ¢ depending on K (u) only, unlike the SP case. Bounds must
either depend on additional properties of i or we have to consider specialized
bounds for restricted problem classes. The case of probabilistic p is similar.
Whereas for SP there are useful bounds in terms of L{» and K (u), there are
no such bounds for AI£. Again, this is not a drawback of AI{ since for no
unbiased AI system could the errors/rewards be bound in terms of K (u) and
the errors/rewards of Aly only.

There is a way to make use of gross (e.g. 25(#) bounds. Assume that
after a reasonable number of cycles k, the information . perceived by the
AI¢ agent contains a lot of information about the true environment p. The
information in Z.j might be coded in any form. Let us assume that the
complexity K (u|t<g) of p under the condition that &y is known, is of order

00f course, the reward feedback 71, depends on the agent’s output. What we have
in mind is, like in sequence prediction, that the true sequence is not influenced by
the agent.
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1. Consider a theorem, bounding the sum of rewards or of other quantities
over cycles 1...00 in terms of f(K(u)) for a function f with f(O(1))=0(1),
like f(n)=2". Then, there will be a bound for cycles k...co in terms of =~
(K (u|i<r)) = O(1). Hence, a bound like 25" can be replaced by small
bound = 2K (#<k) = (1) after k cycles. All one has to show/ensure/assume
is that enough information about p is presented (in any form) in the first k
cycles. In this way, even a gross bound could become useful. In Sect. 5.4 we
use a similar argument to prove that AI¢ is able to learn supervised.

Asymptotic learnability. In the following, we weaken (25) in the hope of
getting a bound applicable to wider problem classes than the passive one.
Consider the I/O sequence §1&1...0n <y caused by AIE. On history g& <, AIE
will output i Eyi in cycle k. Let us compare this to g}, what Aly would
output, still on the same history ¢4« produced by AI£. As Alp maximizes
the p-expected value, AIE causes lower (or at best equal) V! if y,ﬁ differs

kmy,
from g} Let Dyue == E[EZ:J—%;;,@;] be the p-expected number of sub-
optimal choices of AIE, i.e. outputs different from Alp in the first n cycles.
One might weigh the deviating cases by their severity. In particular, when the
p-expected rewards V,'"" for yi and g/ are equal or close to each other, this

should be taken into account in a definition of Dy,¢, e.g. by a weight factor

(Vik (yo < k)—Vkp;” (yr<k)]. These details do not matter in the following quali-
tative discussion. The important difference to (25) is that here we stick to the
history produced by AI¢ and count a wrong decision as, at most, one error.
The wrong decision in the HeavenHell example in the first cycle no longer
counts as losing m rewards, but counts as one wrong decision. In a sense, this
is fairer. One shouldn’t blame those much who make a single wrong decision
for which they have too little information available, in order to make a correct
decision. The AI¢ model would deserve to be called asymptotically optimal if
the probability of making a wrong decision tends to zero, i.e. if

Dpue/n —0 for n—oo, ie. Dpue = o(n). (26)

We say that p can be asymptotically learned (by AIE) if (26) is satisfied. We
claim that AI¢ (for my — 0o) can asymptotically learn every problem p of
relevance, i.e. AI¢ is asymptotically optimal. We included the qualifier of rele-
vance, as we are not sure whether there could be strange u spoiling (26) but we
expect those p to be irrelevant from the perspective of Al In the field of learn-
ing, there are many asymptotic learnability theorems, often not too difficult
to prove. So a proof of (26) might also be feasible. Unfortunately, asymptotic
learnability theorems are often too weak to be useful from a practical point

of view. Nevertheless, they point in the right direction.
Uniform p. jFrom the convergence (23) of € — 1 we might expect V,ffbk —

VP for all p, and hence we might also expect yi defined in (22) to converge

to y% defined in (11) for k — co. The first problem is that if the Vi, for

the different choices of y, are nearly equal, then even if V,é’;flk ~VE yi £l
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is possible due to the non-continuity of argmax,, . This can be cured by a
weighted D¢ as described above. More serious is the second problem we
explain for hy=1 and X=R={0,1}. For yizargmaxykg(yf<kyk1) to converge
to v}, = argmaxy, f1(yr<ryrl), it is not sufficient to know that &(gr<pyi,) —
w(yr<x i) as proven in (23). We need convergence not only for the true
output 9, but also for alternative outputs yg. yi converges to gk if £ converges
uniformly to y, i.e. if in addition to (23)

\n(yr<ryrar) — E(yraryial)| < o |plyraryzy) — E(yearyzy)|  Vyray (27)

holds for some constant ¢ (at least in a u-expected sense). We call p satisfying
(27) wniform. For uniform p one can show (26) with appropriately weighted
Dy,u¢ and bounded horizon Ay <hpqs. Unfortunately there are relevant p that
are not uniform.

Other concepts. In the following, we briefly mention some further con-
cepts. A Markovian p is defined as depending only on the last cycle, i.e.
pw(yr<pyzy) = pr(ze_1yz,). We say p is generalized (I"-order) Markovian,
if p(yr<ryxy) = pe(Th—1YTr—1+1:k—1y2;) for fixed I. This property has some
similarities to factorizable p defined in (14). If further pp = piVk, p is called
stationary. Further, we call p (§) forgetful if pu(yr<ryxy) (E(yr<ryxy)) be-
come(s) independent of yz; for fixed | and k — oo with p-probability 1.
Further, we say p is farsighted if limmkﬁooy,im") exists. More details will be
given in Sect. 4.5, where we also give an example of a farsighted p, for which,
nevertheless, the limit mj — oo makes no sense.

Summary. We have introduced several concepts that might be useful for
proving value bounds, including forgetful, relevant, asymptotically learnable,
farsighted, uniform, (generalized) Markovian, factorizable and (pseudo)passive
1. We have sorted them here, approximately in the order of decreasing gener-
ality. We will call them separability concepts. The more general (like relevant,
asymptotically learnable and farsighted) p will be called weakly separable,
the more restrictive (like (pseudo) passive and factorizable) p will be called
strongly separable, but we will use these qualifiers in a more qualitative, rather
than rigid sense. Other (non-separability) concepts are deterministic p and,
of course, the class of all chronological .

4.4 Pareto Optimality of AI¢

This subsection shows Pareto-opimtality of AI£ analogous to SP. The total
p-expected reward Vfg of policy p¢ of the AI€ model is of central interest in
judging the performance of AI£. We know that there are policies (e.g. p* of
Alp) with higher p-value (V; > V,fg). In general, every policy based on an
estimate p of p that is closer to p than £ is, outperforms p¢ in environment
1, simply because it is more tailored toward p. On the other hand, such a
system probably performs worse than p¢ in other environments. Since we do
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not know p in advance we may ask whether there exists a policy p with better
or equal performance than p¢ in all environments v € M and a strictly better
performance for one v€ M. This would clearly render p¢ suboptimal. One can
show that there is no such p [26]

Definition 6 (Pareto Optimality).~ A policy p is called Pareto optimal if
there is mo other policy p with VP >VP for all ve M and strict inequality for
at least one v.

Theorem 5 (Pareto Optimality). AI¢ alias p is Pareto optimal.

Pareto optimality should be regarded as a necessary condition for an agent
aiming to be optimal. From a practical point of view, a significant increase of V'
for many environments v may be desirable, even if this causes a small decrease
of V for a few other v. The impossibility of such a “balanced” improvement
is a more demanding condition on p® than pure Pareto optimality. In [26] it
has been shown that AI¢ is also balanced Pareto optimal.

4.5 The Choice of the Horizon

The only significant arbitrariness in the AI¢ model lies in the choice of the
horizon function hyp =my—k-+1. We discuss some choices that seem to be
natural and give preliminary conclusions at the end. We will not discuss ad
hoc choices of hy, for specific problems (like the discussion in Sect. 5.2 in the
context of finite strategic games). We are interested in universal choices of
mg.

Fixed horizon. If the lifetime of the agent is known to be m, which is in
practice always large but finite, then the choice my=m maximizes correctly
the expected future reward. Lifetime m is usually not known in advance,
as in many cases the time we are willing to run an agent depends on the
quality of its outputs. For this reason, it is often desirable that good outputs
are not delayed too much, if this results in a marginal reward increase only.
This can be incorporated by damping the future rewards. If, for instance, the
probability of survival in a cycle is v <1, an exponential damping (geometric
discount) 7y := 7} -y* is appropriate, where 7, are bounded, e.g. 7}, € [0,1].
Expression (22) converges for my, — oo in this case.!! But this does not solve
the problem, as we introduced a new arbitrary time scale (1—+)~!. Every
damping introduces a time scale. Taking v— 1 is prone to the same problems
as my — 0o in the undiscounted case discussed below.

Dynamic horizon (universal & harmonic discounting). The largest
horizon with guaranteed finite and enumerable reward sum can be obtained by
the universal discount r~»>75-2~5*) This discount results in truly farsighted
agent with effective horizon that grows faster than any computable function.

H)\More precisely, g, =argmax lim Vk*i (Y% <kyk) exists.
Y mj—00 k
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It is similar to a near-harmonic discount rj~»ry-k~(1+¢) | since 2-K*) <1/k
for most k and 27 5®*) > ¢/(klog?k). More generally, the time-scale invariant
damping factor 7, =r} -k~ introduces a dynamic time scale. In cycle k the
contribution of cycle 21/ is damped by a factor ; The effective horizon hy
in this case is ~k. The choice hj,=(-k with f~2/® qualitatively models the
same behavior. We have not introduced an arbitrary time scale m, but limited
the farsightedness to some multiple (or fraction) of the length of the current
history. This avoids the preselection of a global time scale m or 1i . This
choice has some appeal, as it seems that humans of age k years usually do not
plan their lives for more than, perhaps, the next k years (Bryman=21). From a
practical point of view this model might serve all needs, but from a theoretical
point we feel uncomfortable with such a limitation in the horizon from the
very beginning. Note that we have to choose § = O(1) because otherwise
we would again introduce a number (3, which has to be justified. We favor
the universal discount v, =2~5®)since it allows us, if desired, to “mimic”
all other more greedy behaviors based on other discounts «; by choosing
i €[0,¢-93] € [0,27 K (R,

Infinite horizon. The naive limit my — oo in (22) may turn out to be well
defined and the previous discussion superfluous. In the following, we suggest a

limit that is always well defined (for finite )’). Let y,ﬁm“ be defined as in (22)

with dependence on mj made explicit. Further, let y<m) ={ y(m") my>m}
be the set of outputs in cycle k for the choices my=m,m+1,m~+2,.... Because

ykm Dy“”“ #{}, we have yk = ky,j”’ #{}. We define the my =00

model to output any y ) ¢ y< . This is the best output consistent with

some arbitrary large choice of my. Choosing the lexicographically smallest
(00) 6:);(00) (m)

would correspond to the lower limit limméooyk , which always

ex1sts (for finite )). Generally y(oo) € y(‘”) is unique, i.e. |y,§°°)| =1 iff the

naive limit limmﬂooyl(f ™) exists. Note that the limit limy, oo Vi, (yr <) need
not exist for this construction.

Average reward and differential gain. Taking the raw average reward
(rg+...+7rm)/(m—k+1) and m— oo also does not help: consider an arbitrary
policy for the first k cycles and the/an optimal policy for the remaining cycles
k+1...00. In e.g. i.i.d. environments the limit exists, but all these policies give
the same average value, since changing a finite number of terms does not affect
an infinite average. In MDP environments with a single recurrent class one can
define the relative or differential gain [3]. In more general environments (we
are interested in) the differential gain can be infinite, which is acceptable,
since differential gains can still be totally ordered. The major problem is
the existence of the differential gain, i.e. whether it converges for m — oo
in IRU{oo} at all (and does not oscillate). This is just the old convergence
problem in slightly different form.
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Immortal agents are lazy. The construction in the next to previous para-
graph leads to a mathematically elegant, no-parameter AI£ model. Unfortu-
nately, this is not the end of the story. The limit mj— oo can cause undesirable
results in the Al model for special p, which might also happen in the AI¢
model whatever we define mj, — oo. Consider an agent who for every v/I con-
secutive days of work, can thereafter take [ days of holiday. Formally, consider
Y=X=R=1{0,1}. Output yx =0 shall give reward r, =0 and output y; =1
shall give ry=1iff y, _,_ /...yx—1=0...0 for some [, i.e. the agent can achieve
[ consecutive positive rewards if there was a preceding sequence of length at
least /1 with y =, = 0. If the lifetime of the Aly agent is m, it outputs
Yx =0 in the first s cycles and then 7 =1 for the remaining s? cycles with
s such that s+s2=m. This will lead to the highest possible total reward
Vip =8> =m+5— /m+1/s. Any fragmentation of the 0 and 1 sequences
would reduce Vi,,, e.g. alternatingly working for 2 days and taking 4 days off
would give Vi, = gm. For m— oo the Alu agent can and will delay the point s
of switching to ¢, =1 indefinitely and always output 0 leading to total reward
0, obviously the worst possible behavior. The AI¢ agent will explore the above
rule after a while of trying y;=0/1 and then applies the same behavior as the
ATy agent, since the simplest rules covering past data dominate £. For finite
m this is exactly what we want, but for infinite m the AI€ model (probably)
fails, just as the ATy model does. The good point is that this is not a weakness
of the AI€ model in particular, as Al fails too. The bad point is that my — oo
has far-reaching consequences, even when starting from an already very large
my=m. This is because the u of this example is highly nonlocal in time, i.e.
it may violate one of our weak separability conditions.

Conclusions. We are not sure whether the choice of my is of marginal im-
portance, as long as my is chosen sufficiently large and of low complexity,
my = 22" for instance, or whether the choice of mj will turn out to be a
central topic for the AI£ model or for the planning aspect of any Al system
in general. We suppose that the limit my — oo for the AI€ model results in
correct behavior for weakly separable pu. A proof of this conjecture, if true,
would probably give interesting insights.

4.6 Outlook

Expert advice approach. We considered expected performance bounds for
predictions based on Solomonoff’s prior. The other, dual, currently very popu-
lar approach, is “prediction with expert advice” (PEA) invented by Littlestone
and Warmuth (1989), and Vovk (1992). Whereas PEA performs well in any
environment, but only relative to a given set of experts , our A¢ predictor
competes with any other predictor, but only in expectation for environments
with computable distribution. It seems philosophically less compromising to
make assumptions on prediction strategies than on the environment, however
weak. One could investigate whether PEA can be generalized to the case of
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active agents, which would result in a model dual to AIXI. We believe the
answer to be negative, which on the positive side would show the necessity of
Occam’s razor assumption, and the distinguishedness of AIXI.

Actions as random variables. The uniqueness for the choice of the gener-
alized £ (16) in the AIXI model could be explored. From the originally many
alternatives, which could all be ruled out, there is one alternative which still
seems possible. Instead of defining £ as in (21) one could treat the agent’s
actions y also as universally distributed random variables and then condition-
alize £ on y by the chain rule.

Structure of AIXI. The algebraic properties and the structure of AIXI could
be investigated in more depth. This would extract the essentials from AIXI
which finally could lead to an axiomatic characterization of AIXI. The benefit
is as in any axiomatic approach. It would clearly exhibit the assumptions,
separate the essentials from technicalities, simplify understanding and, most
importantly, guide in finding proofs.

Restricted policy classes. The development in this section could be scaled
down to restricted classes of policies P. One may define V* =argmax,cpV?.
For instance, consider a finite class of quickly computable policies. For MDPs,
¢ is quickly computable and Vgp can be (efficiently) computed by Monte Carlo
sampling. Maximizing over the finitely many policies p€ P selects the asymp-
totically best policy p¢ from P for all (ergodic) MDPs [26].

4.7 Conclusions

All tasks that require intelligence to be solved can naturally be formulated
as a maximization of some expected utility in the framework of agents. We
gave an explicit expression (11) of such a decision-theoretic agent. The main
remaining problem is the unknown prior probability distribution p! of the en-
vironment(s). Conventional learning algorithms are unsuitable, because they
can neither handle large (unstructured) state spaces nor do they converge in
the theoretically minimal number of cycles nor can they handle non-stationary
environments appropriately. On the other hand, the universal semimeasure &
(16), based on ideas from algorithmic information theory, solves the problem
of the unknown prior distribution for induction problems. No explicit learn-
ing procedure is necessary, as £ automatically converges to u. We unified the
theory of universal sequence prediction with the decision-theoretic agent by
replacing the unknown true prior gA! by an appropriately generalized univer-
sal semimeasure A1, We gave strong arguments that the resulting AI€ model
is universally optimal. Furthermore, possible solutions to the horizon problem
were discussed. In Sect. 5 we present a number of problem classes, and outline
how the AI£ model can solve them. They include sequence prediction, strategic
games, function minimization and, especially, how AI¢ learns to learn super-
vised. In Sect. 6 we develop a modified time-bounded (computable) AIXTt!
version.
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5 Important Problem Classes

In order to give further support for the universality and optimality of the AI¢
theory, we apply AI¢ in this section to a number of problem classes. They
include sequence prediction, strategic games, function minimization and, es-
pecially, how AI¢ learns to learn supervised. For some classes we give concrete
examples to illuminate the scope of the problem class. We first formulate each
problem class in its natural way (when pP*™*™ is known) and then construct a
formulation within the Al model and prove its equivalence. We then consider
the consequences of replacing p by €. The main goal is to understand why and
how the problems are solved by AI£. We only highlight special aspects of each
problem class. Sections 5.1-5.5 together should give a better picture of the AI¢
model. We do not study every aspect for every problem class. The subsections
may be read selectively, and are not essential to understand the remainder.

5.1 Sequence Prediction (SP)

We introduced the AI£ model as a unification of ideas of sequential decision
theory and universal probability distribution. We might expect AI{ to behave
identically to SP&, when faced with a sequence prediction problem, but things
are not that simple, as we will see.

Using the AIx model for sequence prediction. We saw in Sect. 3 how
to predict sequences for known and unknown prior distribution pSY. Here
we consider binary sequences'? zj2z523... € IB> with known prior probability
pSP (212023...).

We want to show how the Al model can be used for sequence prediction.
We will see that it makes the same prediction as the SPu agent. For simplicity
we only discuss the special error loss £y =1—0d4y, where § is the Kronecker
symbol, defined as d,, =1 for a=b and 0 otherwise. First, we have to specify
how the Al model should be used for sequence prediction. The following
choice is natural:

The system’s output yy, is interpreted as a prediction for the kt* bit zj of
the string under consideration. This means that yy is binary (yp € IB=:)). As
a reaction of the environment, the agent receives reward rp =1 if the prediction
was correct (yr =2zk), or r, =0 if the prediction was erroneous (yi # zx). The
question is what the observation oy in the next cycle should be. One choice
would be to inform the agent about the correct k' bit of the string and set
o = z. But as from the reward rj in conjunction with the prediction yg, the
true bit zp = dy,r, can be inferred, this information is redundant. There is
no need for this additional feedback. So we set oy =€ € O ={e}, thus having
xp =1, € R=X={0,1}. The agent’s performance does not change when we
include this redundant information; it merely complicates the notation. The
prior probability ;A! of the Aly model is

12We use z;, to avoid notational conflicts with the agent’s inputs xy.
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Myiryyrry)

S
P(élel“'Syka)
Sp

(21..-21) (28)

pM ey ykey) = p
= pu
=

In the following, we will drop the superscripts of p because they are clear
from the arguments of p and the p equal in any case. It is intuitively clear
and can be formally shown [19, 30] that maximizing the future reward V/i is
identical to greedily maximizing the immediate expected reward V). There
is no exploration-exploitation tradeoff in the prediction case. Hence, Alu acts
with

Yp = arg H?lJaX Vk*kH (yx<kyk)
k

= argmaerk-uAI(y%<kyrk) = argmax °F (41..212;)  (29)
Yk - Zk

The first equation is the definition of the agent’s action (10) with my replaced
by k. In the second equation we used the definition (9) of Viy,. In the last
equation we used (28) and ri =0y, ., .

So, the Al model predicts that z; that has maximal p-probability, given
Z1...2k—1. This prediction is independent of the choice of my. It is exactly the
prediction scheme of the sequence predictor SPu with known prior described
in Sect. 3.5 (with special error loss). As this model was optimal, Alu is op-
timal too, i.e. has minimal number of expected errors (maximal p-expected
reward) as compared to any other sequence prediction scheme. From this, it
is clear that the value V" must be closely related to the expected error Ej»
(18). Indeed, one can show that V; =m—E2» and similarly for general loss
functions.

Using the AI£ model for sequence prediction. Now we want to use the
universal AI¢ model instead of Alu for sequence prediction and try to derive
error/loss bounds analogous to (19). Like in the Al case, the agent’s output
yr in cycle k is interpreted as a prediction for the k" bit zj of the string
under consideration. The reward is ry =dy,., and there are no other inputs
or = €. What makes the analysis more difficult is that £ is not symmetric
in y;1r; < (1—y;)(1—7;) and (28) does not hold for £. On the other hand, ¢!
converges to ! in the limit (23), and (28) should hold asymptotically for £ in
some sense. So we expect that everything proven for Alu holds approximately
for AI€. The AI€ model should behave similarly to Solomonoff prediction SPE.
In particular, we expect error bounds similar to (19). Making this rigorous
seems difficult. Some general remarks have been made in the last section. Note
that bounds like (25) cannot hold in general, but could be valid for AI¢ in
(pseudo)passive environments.

Here we concentrate on the special case of a deterministic computable
environment, i.e. the environment is a sequence Z=212s... with K (21.00) <00.
Furthermore, we only consider the simplest horizon model my =k, i.e. greedily
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maximize only the next reward. This is sufficient for sequence prediction, as
the reward of cycle k only depends on output yi and not on earlier decisions.
This choice is in no way sufficient and satisfactory for the full AI¢ model, as
one single choice of my, should serve for all AI problem classes. So AI¢ should
allow good sequence prediction for some universal choice of my and not only
for my =k, which definitely does not suffice for more complicated Al problems.
The analysis of this general case is a challenge for the future. For my =Fk the
AI¢ model (22) with o;=¢ and 7, €{0,1} reduces to

Ur = argmax E T - E(Ur<ryry) = argmax&(Yr<ryrl). (30)
Yk Yk
Tk

The environmental response 7, is given by dy, 3, ; it is 1 for a correct prediction
(Jr = 2x) and 0 otherwise. One can show [19, 30] that the number of wrong
predictions E21 of the AI¢ model (30) in these environments is bounded by

BAIE £ 9K(Giw) < o (31)

for a computable deterministic environment string Z;2,.... The intuitive in-
terpretation is that each wrong prediction eliminates at least one program

p of size I(p) % K (%). The size is smaller than K (%), as larger policies could
not mislead the agent to a wrong prediction, since there is a program of size
K (%) making a correct prediction. There are at most 25 ($)+9(1) such policies,
which bounds the total number of errors.

We have derived a finite bound for E2, but unfortunately, a rather weak
one as compared to (19). The reason for the strong bound in the SP case was
that every error eliminates half of the programs.

The AI§ model would not be sufficient for realistic applications if the bound
(31) were sharp, but we have the strong feeling (but only weak arguments)
that better bounds proportional to K (2) analogous to (19) exist. The current
proof technique is not strong enough for achieving this. One argument for a
better bound is the formal similarity between argmax., {(2<xz;,) and (30), the
other is that we were unable to construct an example sequence for which AI¢
makes more than O(K(2)) errors.

5.2 Strategic Games (SG)

Introduction. Strategic games (SG) are a very important class of problems.
Game theory considers simple games of chance like roulette, combined with
strategy like backgammon, up to purely strategic games like chess or checkers
or go. In fact, what is subsumed under game theory is so general that it
includes not only a huge variety of game types, but can also describe political
and economic competitions and coalitions, Darwinism and many more topics.
It seems that nearly every AI problem could be brought into the form of a
game. Nevertheless, the intention of a game is that several players perform
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actions with (partial) observable consequences. The goal of each player is
to maximize some utility function (e.g. to win the game). The players are
assumed to be rational, taking into account all information they posses. The
different goals of the players are usually in conflict. For an introduction into
game theory, see [16, 48, 53, 47].

If we interpret the AI system as one player, and the environment mod-
els the other rational player and the environment provides the reinforcement
feedback ri, we see that the agent-environment configuration satisfies all cri-
teria of a game. On the other hand, the Al models can handle more general
situations, since they interact optimally with an environment, even if the en-
vironment is not a rational player with conflicting goals.

Strictly competitive strategic games. In the following, we restrict our-
selves to deterministic, strictly competitive strategic'® games with alternating
moves. Player 1 makes move y; in round k, followed by the move oy of player
2. So a game with n rounds consists of a sequence of alternating moves
Y101Y2032...Yn0n. At the end of the game in cycle n the game or final board sit-
uation is evaluated with V (y101 ...y, 0, ). Player 1 tries to maximize V', whereas
player 2 tries to minimize V. In the simplest case, V is 1 if player 1 won the
game, V' =—1 if player 2 won and V =0 for a draw. We assume a fixed game
length n independent of the actual move sequence. For games with variable
length but maximal possible number of moves n, we could add dummy moves
and pad the length to n. The optimal strategy (Nash equilibrium) of both
players is a minimax strategy:

0r = arg min max min ... max min V(4101 ...Y50k---YnOn ), (32)
Ok Yk+1 Ok+1 Yn On

Yr = arg maxmin ... max min V(§101...Yk—10k—1YkOk---YnOn )- (33)
Yk Ok Yn On

But note that the minimax strategy is only optimal if both players behave
rationally. If, for instance, player 2 has limited capabilites or makes errors
and player 1 is able to discover these (through past moves), he could exploit
these weaknesses and improve his performance by deviating from the minimax
strategy. At least the classical game theory of Nash equilibria does not take
into account limited rationality, whereas the AI¢ agent should.

Using the AIx model for game playing. In the following, we demonstrate
the applicability of the ATl model to games. The Alx model takes the position
of player 1. The environment provides the evaluation V. For a symmetric sit-
uation we could take a second Alp model as player 2, but for simplicity we
take the environment as the second player and assume that this environmen-
tal player behaves according to the minimax strategy (32). The environment

13In game theory, games like chess are often called ‘extensive’, whereas ‘strategic’
is reserved for a different kind of game.

We anticipate notationally the later identification of the moves of player 1/2
with the actions/observations in the AI models.
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serves as a perfect player and as a teacher, albeit a very crude one, as it tells
the agent at the end of the game only whether it won or lost.

The minimax behavior of player 2 can be expressed by a (deterministic)
probability distribution ;5% as the following:

1 if o = argmin ... maxmin V(y101...Yr0k---ynoh) Yk
0y n

15 (y104..yn0,,) = _ i y, o
0 otherwise

(34)
The probability that player 2 makes move oy, is > (1101 ...9x0;,), which is 1
for o, =0y, as defined in (32) and 0 otherwise.

Clearly, the Al system receives no feedback, i.e. ry=...=7,_1=0, until the
end of the game, where it should receive positive/negative/neutral feedback
on a win/loss/draw, i.e. r, = V(...). The environmental prior probability is
therefore
u MSG(ylol...ynon) if r1.r_1=0
H (ylxl'“ynxn) = and r, = V(ylol-"ynon) ) (35)

0 otherwise

where x; =r;0;. If the environment is a minimax player (32) plus a crude
teacher V, i.e. if 4! is the true prior probability, the question is now: What
is the behavior g2T of the Alu agent? It turns out that if we set my =n the
Alp agent is also a minimax player (33) and hence optimal (yi!=y3¢, see
[19, 30] for a formal proof). Playing a sequence of games is a special case of
a factorizable p described in Sect. 2.7, with identical factors u, for all r and
equal episode lengths n, 1 —n,=n.

Hence, in a minimax environment Aly behaves itself as a minimax strategy,

g, = argmaxmin.. max min V(§0rni1:k—1---YOk:(r+1)n) (36)
Yk Ok Yr+1)n O@(r+1)n

with 7 such that rn <k < (r+1)n and for any choice of m;, as long as the
horizon hy >n.

Using the AI¢ Model for Game Playing. When going from the specific
Alp model, where the rules of the game are explicitly modeled into the prior
probability pAl, to the universal model AI¢, we have to ask whether these
rules can be learned from the assigned rewards ri. Here, the main reason for
studying the case of repeated games rather than just one game arises. For a
single game there is only one cycle of nontrivial feedback, namely the end of
the game, which is too late to be useful except when further games follow.

We expect that no other learning scheme (with no extra information) can
learn the game more quickly than AI¢, since p?! factorizes in the case of
games of fixed length, i.e. ! satisfies a strong separability condition. In the
case of variable game length the entanglement is also low. ! should still be
sufficiently separable, allowing us to formulate and prove good reward bounds
for AI¢. A qualitative argument goes as follows:
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Since initially, AI¢ loses all games, it tries to draw out a loss as long as pos-
sible, without having ever experienced or even knowing what it means to win.
Initially, AI€ will make a lot of illegal moves. If illegal moves abort the game
resulting in (non-delayed) negative reward (loss), AI can quickly learn the
typically simple rules concerning legal moves, which usually constitute most
of the rules; just the goal rule is missing. After having learned the move-rules,
AT¢ learns the (negatively rewarded) losing positions, the positions leading to
losing positions, etc., so it can try to draw out losing games. For instance,
in chess, avoiding being check mated for 20, 30, 40 moves against a master
is already quite an achievement. At this ability stage, AI{ should be able to
win some games by luck, or speculate about a symmetry in the game that
check mating the opponent will be positively rewarded. Once having found
out the complete rules (moves and goal), AI£ will right away reason that
playing minimax is best, and henceforth beat all grandmasters.

If a (complex) game cannot be learned in this way in a realistic number of
cycles, one has to provide more feedback. This could be achieved by interme-
diate help during the game. The environment could give positive (negative)
feedback for every good (bad) move the agent makes. The demand on whether
a move is to be valuated as good should be adapted to the gained experience
of the agent in such a way that approximately the better half of the moves
are valuated as good and the other half as bad, in order to maximize the
information content of the feedback.

For more complicated games like chess, even more feedback may be nec-
essary from a practical point of view. One way to increase the feedback far
beyond a few bits per cycle is to train the agent by teaching it good moves.
This is called supervised learning. Despite the fact that the Alp model has
only a reward feedback ry, it is able to learn supervised, as will be shown
in Sect. 5.4. Another way would be to start with simpler games containing
certain aspects of the true game and to switch to the true game when the
agent has learned the simple game.

No other difficulties are expected when going from p to . Eventually ¢4
will converge to the minimax strategy p!. In the more realistic case, where
the environment is not a perfect minimax player, AI£ can detect and exploit
the weakness of the opponent.

Finally, we want to comment on the input/output space X' /Y of the Al
models. In practical applications, ) will possibly include also illegal moves.
If YV is the set of moves of, e.g. a robotic arm, the agent could move a wrong
figure or even knock over the figures. A simple way to handle illegal moves y
is by interpreting them as losing moves, which terminate the game. Further,
if, e.g. the input zy, is the image of a video camera which makes one shot per
move, X is not the set of moves by the environment but includes the set of
states of the game board. The discussion in this section handles this case as
well. There is no need to explicitly design the systems I/O space X'/ for a
specific game.
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The discussion above on the AI¢ agent was rather informal for the following
reason: game playing (the SG¢ agent) has (nearly) the same complexity as
fully general AI, and quantitative results for the AI agent are difficult (but
not impossible) to obtain.

5.3 Function Minimization (FM)

Applications/examples. There are many problems that can be reduced
to function minimization (FM) problems. The minimum of a (real-valued)
function f:)Y— IR over some domain ) or a good approximate to the minimum
has to be found, usually with some limited resources.

One popular example is the traveling salesman problem (TSP). ) is the
set of different routes between towns, and f(y) the length of route y€). The
task is to find a route of minimal length visiting all cities. This problem is
NP hard. Getting good approximations in limited time is of great importance
in various applications. Another example is the minimization of production
costs (MPC), e.g. of a car, under several constraints.  is the set of all alter-
native car designs and production methods compatible with the specifications
and f(y) the overall cost of alternative y € Y. A related example is finding
materials or (bio)molecules with certain properties (MAT), e.g. solids with
minimal electrical resistance or maximally efficient chlorophyll modifications,
or aromatic molecules that taste as close as possible to strawberry. We can
also ask for nice paintings (NPT). Y is the set of all existing or imaginable
paintings, and f(y) characterizes how much person A likes painting y. The
agent should present paintings which A likes.

For now, these are enough examples. The TSP is very rigorous from a
mathematical point of view, as f, i.e. an algorithm of f, is usually known. In
principle, the minimum could be found by exhaustive search, were it not for
computational resource limitations. For MPC, f can often be modeled in a
reliable and sufficiently accurate way. For MAT you need very accurate phys-
ical models, which might be unavailable or too difficult to solve or implement.
For NPT all we have is the judgement of person A on every presented paint-
ing. The evaluation function f cannot be implemented without scanning A’s
brain, which is not possible with today’s technology.

So there are different limitations, some depending on the application we
have in mind. An implementation of f might not be available, f can only be
tested at some arguments y and f(y) is determined by the environment. We
want to (approximately) minimize f with as few function calls as possible
or, conversely, find an as close as possible approximation for the minimum
within a fixed number of function evaluations. If f is available or can quickly
be inferred by the agent and evaluation is quick, it is more important to
minimize the total time needed to imagine new trial minimum candidates
plus the evaluation time for f. As we do not consider computational aspects
of AI¢ till Sect. 6 we concentrate on the first case, where f is not available or
dominates the computational requirements.
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The greedy model. The FM model consists of a sequence 91 2192%2... where
Uk 1s a trial of the FM agent for a minimum of f and Zx = f(yx) is the true
function value returned by the environment. We randomize the model by
assuming a probability distribution p(f) over the functions. There are several
reasons for doing this. We might really not know the exact function f, as in
the NPT example, and model our uncertainty by the probability distribution
1. What is more important, we want to parallel the other AI classes, like in
the SPp model, where we always started with a probability distribution u
that was finally replaced by £ to get the universal Solomonoff prediction SP¢.
We want to do the same thing here. Further, the probabilistic case includes
the deterministic case by choosing p(f)=0ysy,, where fy is the true function.
A final reason is that the deterministic case is trivial when p and hence fj are
known, as the agent can internally (virtually) check all function arguments
and output the correct minimum from the very beginning.

We assume that ) is countable and that u is a discrete measure, e.g. by
taking only computable functions. The probability that the function values of
YlyeesYn AT 21,...,2, is then given by

PM (121 ynz,) = S ). (37)

fif(yi)=zi V1<i<n

We start with a model that minimizes the expectation z; of the function value
f for the next output y, taking into account previous information:

U = argminsz'u(ylél...yk,lék,lykzk).
Yk

2k

This type of greedy algorithm, just minimizing the next feedback, was suffi-
cient for sequence prediction (SP) and is also sufficient for classification (CF,
not described here). It is, however, not sufficient for function minimization as
the following example demonstrates.

Take f:{0,1} —{1,2,3,4}. There are 16 different functions which shall be
equiprobable, u(f)= 116. The function expectation in the first cycle

(z1) = Zzl-u(ylzl) = 411221 = ;(1424344) =25
z1 21

is just the arithmetic average of the possible function values and is independent
of y1. Therefore, ;1 =0, if we define argmin to take the lexicographically first
minimum in an ambiguous case like here. Let us assume that f(0) =2, where
fo is the true environment function, i.e. 2; =2. The expectation of z; is then

B B 2 for y2=0
(zp) = Zzz-p(OQZ/zzz) = {2,5 for yo=1"

zZ2

For y2=0 the agent already knows f(0)=2, for yo=1 the expectation is, again,
the arithmetic average. The agent will again output g2 =0 with feedback z,=2.
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This will continue forever. The agent is not motivated to explore other y’s as
f(0) is already smaller than the expectation of f(1). This is obviously not
what we want. The greedy model fails. The agent ought to be inventive and
try other outputs when given enough time.

The general reason for the failure of the greedy approach is that the infor-
mation contained in the feedback z, depends on the output yr. A FM agent
can actively influence the knowledge it receives from the environment by the
choice in yi. It may be more advantageous to first collect certain knowledge
about f by an (in greedy sense) nonoptimal choice for yj, rather than to
minimize the z; expectation immediately. The nonminimality of z; might be
overcompensated in the long run by exploiting this knowledge. In SP, the re-
ceived information is always the current bit of the sequence, independent of
what SP predicts for this bit. This is why a greedy strategy in the SP case is
already optimal.

The general FMu/¢ model. To get a useful model we have to think more
carefully about what we really want. Should the FM agent output a good
minimum in the last output in a limited number of cycles m, or should the
average of the z1,...,z,;, values be minimal, or does it suffice that just one z
is as small as possible? The subtle and important differences between these
settings have been analyzed and discussed in detail in [19, 30]. In the following
we concentrate on minimizing the average, or equivalently the sum of function
values. We define the FMy model as to minimize the sum z1+...4+z,,. Building
the p average by summation over the z; and minimizing with respect to the
y; has to be performed in the correct chronological order. With a similar
reasoning as in (7) to (11) we get
U = arg Hylin; r;l;n zzm:(zl + oot zm) (U121 U1 26— 1Yk Z g - Ym Zam )
(38)
By construction, the FMu model guarantees optimal results in the usual sense
that no other model knowing only p can be expected to produce better re-
sults. The interesting case (in AI) is when pu is unknown. We define for this
case, the FM¢ model by replacing u(f) with some £(f), which should as-
sign high probability to functions f of low complexity. So we might define
&)= Zq:vx[U(qz)zﬂx)@’l(‘Z). The problem with this definition is that it is,
in general, undecidable whether a TM ¢ is an implementation of a function
f. &(f) defined in this way is uncomputable, not even approximable. As we
only need a £ analogous to the left hand side of (37), the following definition

is natural
§FM(y121~-ynzn) = Z 9—Ua) (39)
q:q(yi)=2; V1<i<n
"M s actually equivalent to inserting the uncomputable £(f) into (37). One

can show that €™ is an enumerable semimeasure and dominates all enumer-
able probability distributions of the form (37).
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Alternatively, we could have constrained the sum in (39) by q(y1...yn) =
21...zn, analogous to (21), but these two definitions are not equivalent. Defini-
tion (39) ensures the symmetry'® in its arguments and ¢¥™(...yz...yz’...) =0
for z#2z'. It incorporates all general knowledge we have about function min-
imization, whereas (21) does not. But this extra knowledge has only low in-
formation content (complexity of O(1)), so we do not expect FM¢ to perform
much worse when using (21) instead of (39). But there is no reason to deviate
from (39) at this point.

We can now define a loss LEM# as (38) with k=1 and argmin,, replaced by
min,, and, additionally, u replaced by ¢ for LEMS. We expect |LEME — LEMy|
to be bounded in a way that justifies the use of £ instead of p for computable
1, i.e. computable fy in the deterministic case. The arguments are the same
as for the AI¢ model.

In [19, 30] it has been proven that FM¢ is inventive in the sense that it
never ceases searching for minima, but will test all y€Y if Y is finite (and an
infinite set of different y’s if Y is infinite) for sufficiently large horizon m. There
are currently no rigorous results on the quality of the guesses, but for the FMy
agent the guesses are optimal by definition. If K (1) for the true distribution p
is finite, we expect the FM¢ agent to solve the ‘exploration versus exploitation’
problem in a universally optimal way, as £ converges rapidly to u.

Using the AI Models for Function Mininimization. The AI models can
be used for function minimization in the following way. The output y of cycle
k is a guess for a minimum of f, like in the FM model. The reward rj should
be high for small function values zx = f(yx). The choice ry =—zj, for the reward
is natural. Here, the feedback is not binary but ry € R C IR, with R being a
countable subset of IR, e.g. the computable reals or all rational numbers. The
feedback oj should be the function value f(yx). As this is already provided
in the rewards rp we could set o =€ as in Sect. 5.1. For a change and to
see that the choice really does not matter we set o =z here. The Alu prior
probability is

(40)
Inserting this into (10) with my=m one can show that gi!=y™, where yi™
has been defined in (38). The proof is very simple since the FM model has
already a rather general structure, which is similar to the full AI model.

We expect no problem in going from FM¢ to AI€. The only thing the AIE
model has to learn, is to ignore the o feedbacks as all information is already
contained in 7. This task is simple as every cycle provides one data point for
a simple function to learn.

Remark on TSP. The Traveling Salesman Problem (TSP) seems to be trivial
in the Alp model but nontrivial in the AI§ model, because (38) just imple-

15See [65] for a discussion on symmetric universal distributions on unordered data.
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ments an internal complete search, as u(f) = d;prse contains all necessary
information. Aly outputs, from the very beginning, the exact minimum of
fTSP. This “solution” is, of course, unacceptable from a performance per-
spective. As long as we give no efficient approximation £¢ of &, we have not
contributed anything to a solution of the TSP by using AI£¢. The same is true
for any other problem where f is computable and easily accessible. Therefore,
TSP is not (yet) a good example because all we have done is to replace an
NP complete problem with the uncomputable AI model or by a computable
AI£€ model, for which we have said nothing about computation time yet. It is
simply an overkill to reduce simple problems to AI£. TSP is a simple problem
in this respect, until we consider the AI£€ model seriously. For the other ex-
amples, where f is inaccessible or complicated, an AI£¢ model would provide
a true solution to the minimization problem as an explicit definition of f is
not needed for AI¢ and AI&C. A computable version of AI will be defined in
Sect. 6.

5.4 Supervised Learning from Examples (EX)

The developed AI models provide a frame for reinforcement learning. The
environment provides feedback 7, informing the agent about the quality of
its last (or earlier) output y; it assigns reward r to output y. In this sense,
reinforcement learning is explicitly integrated into the Alu/& models. Alu
maximizes the true expected reward, whereas the AI¢ model is a universal,
environment-independent reinforcement learning algorithm.

There is another type of learning method: Supervised learning by presen-
tation of examples (EX). Many problems learned by this method are asso-
ciation problems of the following type. Given some examples o€ R C O, the
agent should reconstruct, from a partially given o', the missing or corrupted
parts, i.e. complete o’ to o such that relation R contains o. In many cases, O
consists of pairs (z,v), where v is the possibly missing part.

Applications/examples. Learning functions by presenting (z,f(z)) pairs
and asking for the function value of z by presenting (z,?) falls into the category
of supervised learning from examples, e.g. f(z) may be the class label or
category of z.

A basic example is learning properties of geometrical objects coded in some
way. For instance, if there are 18 different objects characterized by their size
(small or big), their colors (red, green, or blue) and their shapes (square, trian-
gle, or circle), then (object,property) € R if the object possesses the property.
Here, R is a relation that is not the graph of a single-valued function.

When teaching a child by pointing to objects and saying “this is a
tree” or “look how green” or “how beautiful,” one establishes a relation of
(object,property) pairs in R. Pointing to a (possibly different) tree later and
asking “What is this ?” corresponds to a partially given pair (object,?), where
the missing part “?” should be completed by the child saying “tree.”
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A final example is chess. We have seen that, in principle, chess can be
learned by reinforcement learning. In the extreme case the environment only
provides reward r=1 when the agent wins. The learning rate is probably inac-
ceptable from a practical point of view, due to the low amount of information
feedback. A more practical method of teaching chess is to present example
games in the form of sensible (board-state,move) sequences. They contain in-
formation about legal and good moves (but without any explanation). After
several games have been presented, the teacher could ask the agent to make
its own move by presenting (board-state,?) and then evaluate the answer of
the agent.

Supervised learning with the AIu/¢ model. Let us define the EX
model as follows: The environment presents inputs ox—1 = zxvg = (2k,0k) €
RU(Zx{?}) C Zx(YU{?}) = O to the agent in cycle k—1. The agent is
expected to output y, in the next cycle, which is evaluated with r =1 if
(zk,yx) € R and 0 otherwise. To simplify the discussion, an output yj is ex-
pected and evaluated even when v (#£7) is given. To complete the description
of the environment, the probability distribution pg(0;...0,) of the examples
and questions o; (depending on R) has to be given. Wrong examples should
not occur, i.e. ug should be 0 if o, ¢ RU(Z x{7}) for some 1<i<n. The rela-
tions R might also be probability distributed with o(R). The example prior
probability in this case is

p(01..0n) = > pr(01...00)-o(R). (41)
R

The knowledge of the valuation r; on output yy restricts the possible relations
R, consistent with R(zy,yx)=7%, where R(z,y):=11if (2,y) € R and 0 otherwise.
The prior probability for the input sequence x1...x, if the output sequence of
Alp is y1...yn, is therefore

A2, ynt,) = Z pr(01...0n) - o(R),
R:V1<i<n[R(zi,y;)=r:)

I

where x; = r;0; and 0;_1 = zv; with v; € YU{?}. In the I/O sequence
Y1T1Y2L2... = Y171 22V2Y2T22303... the y171 are dummies, after that regular be-
havior starts with example (zq,v2).

The Alx model is optimal by construction of u*!. For computable prior
ur and o, we expect a near-optimal behavior of the universal AI€ model if pug
additionally satisfies some separability property. In the following, we give some
motivation why the AI¢ model takes into account the supervisor information
contained in the examples and why it learns faster than by reinforcement.

We keep R fixed and assume pg(01...0n) = pr(01)...-ig(on) Z0<0; €
RU(Z x{?}) Vi to simplify the discussion. Short codes ¢ contribute most
to fAI(ylxl...ynxn). As 07...0, is distributed according to the computable
probability distribution pg, a short code of 0;...0,, for large enough n is a
Huffman code with respect to the distribution ug. So we expect ur and hence
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R to be coded in the dominant contributions to &A1 in some way, where the
plausible assumption was made that the y on the input tape do not matter.
Much more than one bit per cycle will usually be learned, i.e. relation R will
be learned in n < K (R) cycles by appropriate examples. This coding of R in
q evolves independently of the feedbacks r. To maximize the feedback r, the
agent has to learn to output a yi with (zx,yx) € R. The agent has to invent a
program extension ¢’ to ¢, which extracts z from ox_1 =(2g,?) and searches
for and outputs a yi with (zx,yx) € R. As R is already coded in ¢, ¢’ can
reuse this coding of R in ¢. The size of the extension ¢’ is, therefore, of order
1. To learn this ¢’, the agent requires feedback r with information content
O(1)=K(¢') only.

Let us compare this with reinforcement learning, where only og—1 = (z,?)
pairs are presented. A coding of R in a short code ¢ for o0;...0, is of no use
and will therefore be absent. Only the rewards r force the agent to learn R.
¢’ is therefore expected to be of size K(R). The information content in the
r’s must be of the order K(R). In practice, there are often only very few
rr, =1 at the beginning of the learning phase, and the information content in
71...rp, 18 much less than n bits. The required number of cycles to learn R by
reinforcement is, therefore, at least but in many cases much larger than K (R).

Although AI¢ was never designed or told to learn supervised, it learns
how to take advantage of the examples from the supervisor. ur and R are
learned from the examples; the rewards r are not necessary for this process.
The remaining task of learning how to learn supervised is then a simple task
of complexity O(1), for which the rewards r are necessary.

5.5 Other Aspects of Intelligence

In Al, a variety of general ideas and methods have been developed. In the
previous subsections, we saw how several problem classes can be formulated
within AI£. As we claim universality of the AI€ model, we want to illuminate
which and how other AI methods are incorporated in the AI€ model by looking
at its structure. Some methods are directly included, while others are or should
be emergent. We do not claim the following list to be complete.

Probability theory and wutility theory are the heart of the Alu/€ models.
The probability £ is a universal belief about the true environmental behavior
. The utility function is the total expected reward, called value, which should
be maximized. Maximization of an expected utility function in a probabilistic
environment is usually called sequential decision theory, and is explicitly in-
tegrated in full generality in our model. In a sense this includes probabilistic
(a generalization of deterministic) reasoning, where the objects of reasoning
are not true and false statements, but the prediction of the environmental
behavior. Reinforcement Learning is explicitly built in, due to the rewards.
Supervised learning is an emergent phenomenon (Sect. 5.4). Algorithmic in-
formation theory leads us to use £ as a universal estimate for the prior prob-
ability pu.
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For horizon >1, the expectimax series in (10) and the process of selecting
maximal values may be interpreted as abstract planning. The expectimax
series is a form of informed search, in the case of Alu, and heuristic search, for
ATE, where £ could be interpreted as a heuristic for g. The minimax strategy of
game playing in case of Aly is also subsumed. The AI¢ model converges to the
minimax strategy if the environment is a minimax player, but it can also take
advantage of environmental players with limited rationality. Problem solving
occurs (only) in the form of how to maximize the expected future reward.

Knowledge is accumulated by AI¢ and is stored in some form not specified
further on the work tape. Any kind of information in any representation on
the inputs y is exploited. The problem of knowledge engineering and repre-
sentation appears in the form of how to train the AI¢ model. More practical
aspects, like language or image processing, have to be learned by AI¢ from
scratch.

Other theories, like fuzzy logic, possibility theory, Dempster-Shafer theory,
and so on are partly outdated and partly reducible to Bayesian probability
theory [7, 8]. The interpretation and consequences of the evidence gap g:=
1—E$k§(yx<kyxk) >0 in £ may be similar to those in Dempster-Shafer theory.
Boolean logical reasoning about the external world plays, at best, an emergent
role in the AI£ model.

Other methods that do not seem to be contained in the AI€ model might
also be emergent phenomena. The AI£ model has to construct short codes of
the environmental behavior, and AIXI¢l (see next section) has to construct
short action programs. If we would analyze and interpret these programs for
realistic environments, we might find some of the unmentioned or unused or
new Al methods at work in these programs. This is, however, pure speculation
at this point. More important: when trying to make AI¢ practically usable,
some other Al methods, like genetic algorithms or neural nets, especially for
1/0 pre/postprocessing, may be useful.

The main thing we wanted to point out is that the AI£ model does not
lack any important known property of intelligence or known AI methodology.
What ¢s missing, however, are computational aspects, which are addressed in
the next section.

6 Time-Bounded AIXI Model

Until now, we have not bothered with the non-computability of the universal
probability distribution £. As all universal models in this paper are based
on &, they are not effective in this form. In this section, we outline how the
previous models and results can be modified /generalized to the time-bounded
case. Indeed, the situation is not as bad as it could be. £ is enumerable and gy, is
still approximable, i.e. there exists an algorithm that will produce a sequence
of outputs eventually converging to the exact output g, but we can never
be sure whether we have already reached it. Besides this, the convergence
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is extremely slow, so this type of asymptotic computability is of no direct
(practical) use, but will nevertheless be important later.

Let p be a program that calculates within a reasonable time ¢ per cycle,
a reasonable intelligent output, i.e. p(Z<x)=91.,. This sort of computability
assumption, that a general-purpose computer of sufficient power is able to
behave in an intelligent way, is the very basis of Al, justifying the hope to be
able to construct agents that eventually reach and outperform human intelli-
gence. For a contrary viewpoint see [45, 49, 50]. It is not necessary to discuss
here what is meant by “reasonable time/intelligence” and “sufficient power”.
What we are interested in, in this section, is whether there is a computable
version AIXIt of the AI¢ agent that is superior or equal to any p with compu-
tation time per cycle of at most £. By “superior”, we mean “more intelligent”
so what we need is an order relation for intelligence, like the one in Definition
5.

The best result we could think of would be an AIXIf with computation
time <t at least as intelligent as any p with computation time <¢. If AI
is possible at all, we would have reached the final goal: the construction of
the most intelligent algorithm with computation time <#. Just as there is no
universal measure in the set of computable measures (within time ), neither
may such an AIXIf exist.

What we can realistically hope to construct is an AIXIf agent of computa-
tion time cf per cycle for some constant c¢. The idea is to run all programs p
of length <[l:=1(p) and time <% per cycle and pick the best output. The total
computation time is ¢-f with ¢c=2'. This sort of idea of “typing monkeys” with
one of them eventually writing Shakespeare, has been applied in various forms
and contexts in theoretical computer science. The realization of this best vote
idea, in our case, is not straightforward and will be outlined in this section.
A related idea is that of basing the decision on the majority of algorithms.
This “democratic vote” idea was used in [44, 68] for sequence prediction, and
is referred to as “weighted majority”.

6.1 Time-Limited Probability Distributions

In the literature one can find time-limited versions of Kolmogorov complexity
[11, 12, 32] and the time-limited universal semimeasure [39, 42, 55]. In the
following, we utilize and adapt the latter and see how far we get. One way to
define a time-limited universal chronological semimeasure is as a mixture over
enumerable chronological semimeasures computable within time # and of size
at most [: »

Sy, = > 27 p(yry,,). (42)

p: l(P)SZA t(P)St~

One can show that fﬁ reduces to A1 defined in (21) for f,l—o0. Let us assume
that the true environmental prior probability~,uAI is equal to or sufficiently

accurately approximated by a p with I(p) <[ and t(p) <t with  and [ of
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reasonable size. There are several Al problems that fall into this class. In
function minimization of Sect. 5.3, the computation of f and ™ are often
feasible. In many cases, the sequences of Sect. 5.1 that should be predicted,
can be easily calculated when 45 is known. In a classification problem, the
probability distribution ¥, according to which examples are presented, is, in
many cases, also elementary. But not all AT problems are of this “easy” type.
For the strategic games of Sect. 5.2, the environment itself is usually a highly
complex strategic player with a pS® that is difficult to calculate, although
one might argue that the environmental player may have limited capabilities
too. But it is easy to think of a difficult-to-calculate physical (probabilistic)
environment like the chemistry of biomolecules.

The number of interesting applications makes this restricted class of Al
problems, with time- and space-bounded environment ,ufl, worthy of study. Su-
perscripts to a probability distribution except for &% indicate their length and
maximal computation time. 5‘” defined in (42), with a yet to be determined
computation time, multiplicatively dominates all ,uﬂ of this type. Hence, an
AI§“~ model, where we use £ as prior probability, is universal, relative to all
AIMH models in the same way as AI{ is universal to Alu for all enumerable
chronological semimeasures j. The argmax,, in (22) selects a yj, for which &
has the highest expected ‘utility Vi, , where §H is the weighted average over

1et is determined by a weighted majority. We expect

the pﬂ' i.e. output yA
AIEY to outperform all (bounded) Alp*, analogous to the unrestricted case.

In the following we analyze the computability properties of fﬁ and Alfg ,

N

ie. of g, > . To compute fﬁ according to the deﬁnition (42) we have to enu-

merate all chronological enumerable semimeasures p't of length <[ and compu-
tation time <t. This can be done similarly to the unbounded case as described

in [42, 19, 30]. All 2! enumerable functions of length <, computable within
time ¢ have to be converted to chronological probability distributions. For
this, one has to evaluate each function for |X|-k different arguments. Hence,

¢l i computable within time!® ¢(£% (yx, ) =0(X|k- 2.7 t). The computation

time of g, ALe depends on the size of X, ) and my. f” has to be evaluated
|| |X|hk times in (22). It is possible to optimize the algorithm and perform
the computation within time

M) = o(Iy| | 2T D) (43)

per cycle. If we assume that the computation time of ug is exactly ¢ for all
arguments the brute-force time ¢ for calculating the sums and maxs in (11)

is t(y?m )>|Y|"*|x|"* -£. Combining this with (43), we get

& &
') = o).

16We assume that a (Turing) machine can be simulated by another in linear time.



Universal Algorithmic Intelligence 275

This result has the proposed structure, that there is a universal Algtf agent
with computation time 2! times the computation time of a special Al agent.

Unfortunately, the class of Alu!! systems with brute-force evaluation of 9
according to (11) is completely uninteresting from a practical point of view.
For instance, in the context of chess, the above result says that the AT s
superior within time 2'-f to any brute-force minimax strategy of computation
timef. Even if the factor of 2! in computation time would not matter, the
AIEH agent is, nevertheless practically useless, as a brute-force minimax chess
player with reasonable time ¢ is a very poor player.

Note that in the case of binary sequence prediction (hy =1, |V|=|X|=2)
the computation time of p coincides with that of y,‘jlp within a factor of 2.
The class Alp* includes all non-incremental sequence prediction algorithms
of length < [ and computation time <#/2. By non-incremental, we mean that
no information of previous cycles is taken into account for speeding up the
computation of ¢ of the current cycle.

The shortcomings (mentioned and unmentioned ones) of this approach are
cured in the next subsection by deviating from the standard way of defining
a time-bounded £ as a sum over functions or programs.

6.2 The Idea of the Best Vote Algorithm

A general agent is a chronological program p(x<x) =y1.,. This form, intro-
duced in Sect. 2.4, is general enough to include any AI system (and also
less intelligent systems). In the following, we are interested in programs p of
length <[ and computation time <{ per cycle. One important point in the
time-limited setting is that p should be incremental, i.e. when computing y;, in
cycle k, the information of the previous cycles stored on the work tape can be
reused. Indeed, there is probably no practically interesting, non-incremental
AT system at all.

In the following, we construct a policy p*, or more precisely, policies p}
for every cycle k that outperform all time- and length-limited Al systems p.
In cycle k, pj, runs all 2! programs p and selects the one with the best output
yr. This is a “best vote” type of algorithm, as compared to the ‘weighted
majority’ type algorithm of the last subsection. The ideal measure for the
quality of the output would be the &-expected future reward

VIS (dicr) o= > 27OV VP = (e g r(ald) (44)
quk

The program p that maximizes Vkpflk should be selected. We have dropped
the normalization A unlike in (24), as it is independent of p and does not
change the order relation in which we are solely interested here. Furthermore,
without normalization, Vk*yi (YZ<k) I=max, Pv,ﬁ(y@ k) is enumerable, which
will be important later.
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6.3 Extended Chronological Programs

In the functional form of the AI£ model it was convenient to maximize Vi,
over all pe Py, i.e. all p consistent with the current history gi <. This was not
a restriction, because for every possibly inconsistent program p there exists
a program p’ € P, consistent with the current history and identical to p for
all future cycles > k. For the time-limited best vote algorithm p* it would be
too restrictive to demand p € Py.. To prove universality, one has to compare
all 2" algorithms in every cycle, not just the consistent ones. An inconsistent
algorithm may become the best one in later cycles. For inconsistent programs
we have to include the g into the input, i.e. p(gi<y) =yl, with g; #y?
possible. For pGPk this was not necessary, as p knows the output yx =y} in
this case. The r#? in the definition of Vj,, are the rewards emerging in the
I/0 sequence, starting with gi . (emerging from p*) and then continued by
applying p and ¢ with g, :=y? for i>k.

Another problem is that we need Vi,,, to select the best policy, but un-
fortunately Vi, is uncomputable. Indeed, the structure of the definition of
Viem,, 1s very similar to that of ¢y, hence a brute-force approach to approximate
Viem,, requires too much computation time as for g,. We solve this problem in
a similar way, by supplementing each p with a program that estimates Vi,
by w}, within time #. We combine the calculation of y? and w} and extend the
notion of a chronological program once again to

p(JE<r) = Wiyl wiyy, (45)

with chronological order w}y} i1 whybyads. ...

6.4 Valid Approximations

Policy p might suggest any output y;, but it is not allowed to rate it with an
arbitrarily high w}, if we want w} to be a reliable criterion for selecting the
best p. We demand that no policy is allowed to claim that it is better than it
actually is. We define a (logical) predicate VA(p) called valid approzimation,
which is true if and only if p always satisfies w} <V} ¢

Jomy,» 1-€. mEver overrates
itself.

VA(p) = VYW ylindy..wlyl : pia<r) = wiyl .. whyh = wf < VIS (i)

(46)
In the following, we restrict our attention to programs p, for which VA(p)
can be proven in some formal axiomatic system. A very important point is
that Vk*flk is enumerable. This ensures the existence of sequences of programs
P1.,D2,P3,... for which VA(p;) can be proven and lim; ,oow?’ sz*,flk for all k and
all I/O sequences. p; may be defined as the naive (nonhalting) approximation
scheme (by enumeration) of Vk*ik terminated after ¢ time steps and using the
approximation obtained so far for w}’ together with the corresponding output
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yt'. The convergence w}’ = Vk*ﬂik ensures that Vk’,ﬁw which we claimed to be
the universally optimal value, can be approximated by p with provable VA(p)
arbitrarily well, when given enough time. The approximation is not uniform
in k, but this does not matter as the selected p is allowed to change from cycle
to cycle.

Another possibility would be to consider only those p that check w}, < V,frik
online in every cycle, instead of the pre-check VA(p), either by constructing a
proof (on the work tape) for this special case, or w} < Vkp,ik is already evident
by the construction of w}. In cases where p cannot guarantee wj < V}frik it

sets w, =0 and, hence, trivially satisfies w} < V,frik. On the other hand, for
these p it is also no problem to prove VA(p) as one has simply to analyze the
internal structure of p and recognize that p shows the validity internally itself,
cycle by cycle, which is easy by assumption on p. The cycle-by-cycle check is
therefore a special case of the pre-proof of VA(p).

6.5 Effective Intelligence Order Relation

In Sect. 4.1 we introduced an intelligence order relation = on Al systems,
based on the expected reward Vkp,flk. In the following we need an order rela-
tion = based on the claimed reward w}, which might be interpreted as an
approximation to >.

Definition 7 (Effective intelligence order relation). We call p effectively
more or equally intelligent than p’ if

p =°p & VEVYE < Fwi ),

p(Yi<k) =wi * wp x AP (Yheg) =W * w) * A wg > wh,
i.e. if p always claims higher reward estimate w than p'.

Relation =€ is a co-enumerable partial order relation on extended chronolog-
ical programs. Restricted to valid approximations it orders the policies w.r.t.
the quality of their outputs and their ability to justify their outputs with high
WE -

6.6 The Universal Time-Bounded AIXItl Agent

In the following, we describe the algorithm p* underlying the universal time-
bounded AIXIE] agent. It is essentially based on the selection of the best
algorithms p;, out of the time t and length | bounded p, for which there exists
a proof of VA(p) with length <ip.

1. Create all binary strings of length [p and interpret each as a coding of a
mathematical proof in the same formal logic system in which VA(-) was
formulated. Take those strings that are proofs of VA(p) for some p and
keep the corresponding programs p.
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N

Eliminate all p of length > L.

3. Modify the behavior of all retained p in each cycle k as follows: Nothing
is changed if p outputs some w}y? within ¢ time steps. Otherwise stop p
and write wg =0 and some arbitrary y; to the output tape of p. Let P be
the set of all those modified programs.

4. Start first cycle: k:=1.

5. Run every p€ P on extended input gy <y, where all outputs are redirected

to some auxiliary tape: p(gi<y) =wiy}...wlyh. This step is performed

incrementally by adding ¢ix—1 for £>1 to the input tape and continuing
the computation of the previous cycle.

Select the program p with highest claimed reward wy: pj :=argmax,w}.

Write ::yzZ to the output tape.

Receive input &y, from the environment.

9. Begin next cycle: k:=k+1, goto step 5.

®© N o

It is easy to see that the following theorem holds.

Theorem 6 (Optimality of AIXTtl). Let p be any extended chronological
(incremental) program like (45) of length l(p) <1 and computation time per
cycle t(p) <t, for which there exists a proof of VA(p) defined in (46) of length
<lp. The algorithm p* constructed in the last paragraph, which depends on I,
t and lp but not on p, is effectively more or equally intelligent, according to
= (see Definition 7) than any such p. The size of p* is [(p*)=O(log(I-t-1p)),
the setup-time s tserup(p*) =O(1%-2'7) and the computation time per cycle is

teyere(p?)=0(2-1).

Roughly speaking, the theorem says that if there exists a computable solution
to some or all AI problems at all, the explicitly constructed algorithm p*
is such a solution. Although this theorem is quite general, there are some
limitations and open questions that we discuss in the next subsection.

The construction of the algorithm p* needs the specification of a formal
logic system (V,\y;,ci,fi,Ri,—,A,=,...), and axioms, and inference rules. A
proof is a sequence of formulas, where each formula is either an axiom or
inferred from previous formulas in the sequence by applying the inference
rules. Details can be found in [25] in a related construction or in any textbook
on logic or proof theory, e.g. [15, 60]. We only need to know that provability
and Turing Machines can be formalized. The setup time in the theorem is
just the time needed to verify the 27 proofs, each needing time O(I%).

6.7 Limitations and Open Questions

e Formally, the total computation time of p* for cycles 1...k increases linearly
with &, i.e. is of order O(k) with a coefficient 2!-#. The unreasonably large
factor 2 is a well-known drawback in best /democratic vote models and will
be taken without further comments, whereas the factor ¢ can be assumed
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to be of reasonable size. If we do not take the limit k¥ — oo but consider
reasonable k, the practical significance of the time bound on p* is somewhat
limited due to the additional additive constant O(I%-2'%). It is much larger
than k-2!-7 as typically [p>>1(VA(p))>1(p)=I.

p* is superior only to those p that justify their outputs (by large w?). It
might be possible that there are p that produce good outputs y; within
reasonable time, but it takes an unreasonably long time to justify their
outputs by sufficiently high w}. We do not think that (from a certain
complexity level onwards) there are policies where the process of construct-
ing a good output is completely separated from some sort of justification
process. But this justification might not be translatable (at least within
reasonable time) into a reasonable estimate of V,f,flk.

The (inconsistent) programs p must be able to continue strategies started
by other policies. It might happen that a policy p steers the environment
to a direction for which p is specialized. A “foreign” policy might be able
to displace p only between loosely connected episodes. There is probably
no problem for factorizable p. Think of a chess game, where it is usually
very difficult to continue the game or strategy of a different player. When
the game is over, it is usually advantageous to replace a player by a better
one for the next game. There might also be no problem for sufficiently
separable p.

There might be (efficient) valid approximations p for which VA(p) is true
but not provable, or for which only a very long (>1p) proof exists.

6.8 Remarks

The idea of suggesting outputs and justifying them by proving reward
bounds implements one aspect of human thinking. There are several pos-
sible reactions to an input. Each reaction possibly has far-reaching con-
sequences. Within a limited time one tries to estimate the consequences
as well as possible. Finally, each reaction is valuated, and the best one is
selected. What is inferior to human thinking is that the estimates w} must
be rigorously proved and the proofs are constructed by blind exhaustive
search, further, that all behaviors p of length <[ are checked. It is inferior
“only” in the sense of necessary computation time but not in the sense of
the quality of the outputs.

In practical applications there are often cases with short and slow programs
ps performing some task 7', e.g. the computation of the digits of m, for
which there exist long but quick programs p; too. If it is not too difficult
to prove that this long program is equivalent to the short one, then it

is possible to prove K!®)(T) ; I(ps) with K* being the time-bounded
Kolmogorov complexity. Similarly, the method of proving bounds wy, for
Viem,, can give high lower bounds without explicitly executing these short
and slow programs, which mainly contribute to Vi, .
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e Dovetailing all length- and time-limited programs is a well-known elemen-
tary idea (e.g. typing monkeys). The crucial part that was developed here
is the selection criterion for the most intelligent agent.

e The construction of AIXI#l and the enumerability of Vim, ensure arbitrary
close approximations of Vi, , hence we expect that the behavior of AIXTE
converges to the behavior of AI¢ in the limit Z,/,lp — 0o, in some sense.

e Depending on what you know or assume that a program p of size | and
computation time per cycle ¢ is able to achieve, the computable AIXI¢
model will have the same capabilities. For the strongest assumption of
the existence of a Turing machine that outperforms human intelligence,
AIXI#l will do too, within the same time frame up to an (unfortunately
very large) constant factor.

7 Discussion

This section reviews what has been achieved in the chapter and discusses
some otherwise unmentioned topics of general interest. We remark on various
topics, including concurrent actions and perceptions, the choice of the 1/0
spaces, treatment of encrypted information, and peculiarities of mortal em-
bodies agents. We continue with an outlook on further research. Since many
ideas have already been presented in the various sections, we concentrate
on nontechnical open questions of general importance, including optimality,
down-scaling, implementation, approximation, elegance, extra knowledge, and
training of/for AIXI(¢l). We also include some (personal) remarks on non-
computable physics, the number of wisdom {2, and consciousness. As it should
be, the chapter concludes with conclusions.

7.1 General Remarks

Game theory. In game theory [48] one often wants to model the situation of
simultaneous actions, whereas the AI£ models have serial I/O. Simultaneity
can be simulated by withholding the environment from the current agent’s
output g, until x; has been received by the agent. Formally, this means that
w(yr<ryry) is independent of the last output y. The AI€ agent is already of
simultaneous type in an abstract view if the behavior p is interpreted as the
action. In this sense, AIXI is the action p* that maximizes the utility function
(reward), under the assumption that the environment acts according to . The
situation is different from game theory, as the environment £ is not a second
‘player’ that tries to optimize his own utility (see Sect. 5.2).

Input/output spaces. In various examples we have chosen differently spe-
cialized input and output spaces X and ). It should be clear that, in principle,
this is unnecessary, as large enough spaces X and Y (e.g. the set of strings of
length 232) serve every need and can always be Turing-reduced to the specific
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presentation needed internally by the AIXI agent itself. But it is clear that,
using a generic interface, such as camera and monitor for learning tic-tac-toe,
for example, adds the task of learning vision and drawing.

How AIXI(¢l) deals with encrypted information. Consider the task of
decrypting a message that was encrypted by a public key encrypter like RSA.
A message m is encrypted using a product n of two large primes p; and po,
resulting in encrypted message ¢c=RSA(m|n). RSA is a simple algorithm of
size O(1). If AIXT is given the public key n and encrypted message ¢, in order
to reconstruct the original message m it only has to “learn” the function
RSA~1(c|n) := RSA(c|p1,p2) =m. RSA™! can itself be described in length
O(1), since RSA is O(1) and p; and py can be reconstructed from n. Only
very little information is needed to learn O(1) bits. In this sense decryption
is easy for AIXI (like TSP, see Sect. 5.3). The problem is that while RSA
is efficient, RSA~! is an extremely slow algorithm, since it has to find the
prime factors from the public key. But note, in AIXI we are not talking about
computation time, we are only talking about information efficiency (learning
in the least number of interaction cycles). One of the key insights in this article
that allowed for an elegant theory of Al was this separation of data efficiency
from computation time efficiency. Of course, in the real world computation
time matters, so we invented AIXItl. AIXItl can do every job as well as the
best length [ and time t bounded agent, apart from time factor 2! and a huge
offset time. No practical offset time is sufficient to find the factors of n, but
in theory, enough offset time allows also AIXI¢! to (once-and-for-all) find the
factorization, and then, decryption is easy of course.

Mortal embodied agents. The examples we gave in this article, particularly
those in Sect. 5, were mainly bodiless agents: predictors, gamblers, optimizers,
learners. There are some peculiarities with reinforcement learning autonomous
embodied robots in real environments.

We can still reward the robot according to how well it solves the task we
want it to do. A minimal requirement is that the robot’s hardware functions
properly. If the robot starts to malfunction its capabilities degrade, resulting
in lower reward. So, in an attempt to maximize reward, the robot will also
maintain itself. The problem is that some parts will malfunction rather quickly
when no appropriate actions are performed, e.g. flat batteries, if not recharged
in time. Even worse, the robot may work perfectly until the battery is nearly
empty, and then suddenly stop its operation (death), resulting in zero reward
from then on. There is too little time to learn how to maintain itself before
it’s too late. An autonomous embodied robot cannot start from scratch but
must have some rudimentary built-in capabilities (which may not be that
rudimentary at all) that allow it to at least survive. Animals survive due
to reflexes, innate behavior, an internal reward attached to the condition of
their organs, and a guarding environment during childhood. Different species
emphasize different aspects. Reflexes and innate behaviors are stressed in
lower animals versus years of safe childhood for humans. The same variety



282 Marcus Hutter

of solutions are available for constructing autonomous robots (which we will
not detail here).

Another problem connected, but possibly not limited to embodied agents,
especially if they are rewarded by humans, is the following: Sufficiently intelli-
gent agents may increase their rewards by psychologically manipulating their
human “teachers,” or by threatening them. This is a general sociological prob-
lem which successful AT will cause, which has nothing specifically to do with
AIXI. Every intelligence superior to humans is capable of manipulating the
latter. In the absence of manipulable humans, e.g. where the reward structure
serves a survival function, AIXI may directly hack into its reward feedback.
Since this is unlikely to increase its long-term survival, AIXI will probably
resist this kind of manipulation (just as most humans don’t take hard drugs,
due to their long-term catastrophic consequences).

7.2 Outlook & Open Questions

Many ideas for further studies were already stated in the various sections of
the article. This outlook only contains nontechnical open questions regarding
AIXI(tl) of general importance.

Value bounds. Rigorous proofs for non-asymptotic value bounds for AI¢ are
the major theoretical challenge — general ones, as well as tighter bounds for
special environments p, e.g. for rapidly mixing MDPs, and/or other perfor-
mance criteria have to be found and proved. Although not necessary from a
practical point of view, the study of continuous classes M, restricted policy
classes, and/or infinite ), X and m may lead to useful insights.

Scaling AIXI down. A direct implementation of the AIXI#l model is, at
best, possible for small-scale (toy) environments due to the large factor 2 in
computation time. But there are other applications of the AIXI theory. We
saw in several examples how to integrate problem classes into the AIXI model.
Conversely, one can downscale the AI£ model by using more restricted forms of
&. This could be done in the same way as the theory of universal induction was
downscaled with many insights to the Minimum Description Length principle
[40, 52] or to the domain of finite automata [14]. The AIXI model might
similarly serve as a supermodel or as the very definition of (universal unbiased)
intelligence, from which specialized models could be derived.

Implementation and approximation. With a reasonable computation
time, the AIXI model would be a solution of Al (see the next point if you
disagree). The AIXT¢ model was the first step, but the elimination of the fac-
tor 2! without giving up universality will almost certainly be a very difficult
task.'” One could try to select programs p and prove VA(p) in a more clever
way than by mere enumeration, to improve performance without destroy-
ing universality. All kinds of ideas like genetic algorithms, advanced theorem
provers and many more could be incorporated. But now we have a problem.

1"But see [25] for an elegant theoretical solution.
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Computability. We seem to have transferred the AI problem just to a dif-
ferent level. This shift has some advantages (and also some disadvantages)
but does not present a practical solution. Nevertheless, we want to stress that
we have reduced the AI problem to (mere) computational questions. Even
the most general other systems the author is aware of depend on some (more
than complexity) assumptions about the environment or it is far from clear
whether they are, indeed, universally optimal. Although computational ques-
tions are themselves highly complicated, this reduction is a nontrivial result.
A formal theory of something, even if not computable, is often a great step
toward solving a problem and also has merits of its own, and Al should not
be different in this respect (see previous item).

Elegance. Many researchers in Al believe that intelligence is something com-
plicated and cannot be condensed into a few formulas. It is more a combining
of enough methods and much explicit knowledge in the right way. From a the-
oretical point of view we disagree, as the AIXI model is simple and seems to
serve all needs. From a practical point of view we agree to the following extent:
To reduce the computational burden one should provide special-purpose algo-
rithms (methods) from the very beginning, probably many of them related to
reduce the complexity of the input and output spaces X and ) by appropriate
pre/postprocessing methods.

Extra knowledge. There is no need to incorporate extra knowledge from the
very beginning. It can be presented in the first few cycles in any format. As
long as the algorithm to interpret the data is of size O(1), the AIXI agent will
“understand” the data after a few cycles (see Sect. 5.4). If the environment y is
complicated but extra knowledge z makes K (u|z) small, one can show that the
bound (17) reduces roughly to In2- K (p1|z) when x1 =z, i.e. when z is presented
in the first cycle. The special-purpose algorithms could be presented in x;
too, but it would be cheating to say that no special-purpose algorithms were
implemented in AIXI. The boundary between implementation and training is
unsharp in the AIXI model.

Training. We have not said much about the training process itself, as it is
not specific to the AIXT model and has been discussed in literature in various
forms and disciplines [63, 56, 57]. By a training process we mean a sequence of
simple-to-complex tasks to solve, with the simpler ones helping in learning the
more complex ones. A serious discussion would be out of place. To repeat a
truism, it is, of course, important to present enough knowledge oy, and evaluate
the agent output yi with 7 in a reasonable way. To maximize the information
content in the reward, one should start with simple tasks and give positive
reward to approximately the better half of the outputs yx.

7.3 The Big Questions

This subsection is devoted to the big questions of Al in general and the AIXI
model in particular with a personal touch.
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On non-computable physics & brains. There are two possible objections
to Al in general and, therefore, to AIXI in particular. Non-computable physics
(which is not too weird) could make Turing computable AT impossible. As at
least the world that is relevant for humans seems mainly to be computable we
do not believe that it is necessary to integrate non-computable devices into
an Al system. The (clever and nearly convincing) Godel argument by Penrose
[49, 50], refining Lucas [45], that non-computational physics must exist and is
relevant to the brain, has (in our opinion convincing) loopholes.

Evolution & the number of wisdom. A more serious problem is the evo-
lutionary information-gathering process. It has been shown that the ‘number
of wisdom’ {2 contains a very compact tabulation of 2" undecidable problems
in its first n binary digits [6]. {2 is only enumerable with computation time
increasing more rapidly with n than any recursive function. The enormous
computational power of evolution could have developed and coded something
like 2 into our genes, which significantly guides human reasoning. In short:
Intelligence could be something complicated, and evolution toward it from an
even cleverly designed algorithm of size O(1) could be too slow. As evolution
has already taken place, we could add the information from our genes or brain
structure to any/our Al system, but this means that the important part is still
missing, and that it is principally impossible to derive an efficient algorithm
from a simple formal definition of Al

Consciousness. For what is probably the biggest question, that of conscious-
ness, we want to give a physical analogy. Quantum (field) theory is the most
accurate and universal physical theory ever invented. Although already de-
veloped in the 1930s, the big question, regarding the interpretation of the
wave function collapse, is still open. Although this is extremely interesting
from a philosophical point of view, it is completely irrelevant from a practi-
cal point of view.'® We believe the same to be valid for consciousness in the
field of Artificial Intelligence: philosophically highly interesting but practically
unimportant. Whether consciousness will be explained some day is another
question.

7.4 Conclusions

The major theme of the chapter was to develop a mathematical foundation
of Artificial Intelligence. This is not an easy task since intelligence has many
(often ill-defined) faces. More specifically, our goal was to develop a theory
for rational agents acting optimally in any environment. Thereby we touched
various scientific areas, including reinforcement learning, algorithmic informa-
tion theory, Kolmogorov complexity, computational complexity theory, infor-
mation theory and statistics, Solomonoff induction, Levin search, sequential
decision theory, adaptive control theory, and many more.

8In the Theory of Everything, the collapse might become of ‘practical’ impor-
tance and must or will be solved.
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We started with the observation that all tasks that require intelligence to
be solved can naturally be formulated as a maximization of some expected
utility in the framework of agents. We presented a functional (3) and an it-
erative (11) formulation of such a decision-theoretic agent in Sect. 2, which
is general enough to cover all Al problem classes, as was demonstrated by
several examples. The main remaining problem is the unknown prior proba-
bility distribution p of the environment(s). Conventional learning algorithms
are unsuitable, because they can neither handle large (unstructured) state
spaces, nor do they converge in the theoretically minimal number of cycles,
nor can they handle non-stationary environments appropriately. On the other
hand, Solomonofl’s universal prior £ (16), rooted in algorithmic information
theory, solves the problem of the unknown prior distribution for induction
problems as was demonstrated in Sect. 3. No explicit learning procedure is
necessary, as £ automatically converges to p. We unified the theory of uni-
versal sequence prediction with the decision-theoretic agent by replacing the
unknown true prior p by an appropriately generalized universal semimeasure
¢ in Sect. 4. We gave various arguments that the resulting AIXI model is the
most intelligent, parameter-free and environmental/application-independent
model possible. We defined an intelligence order relation (Definition 5) to give
a rigorous meaning to this claim. Furthermore, possible solutions to the hori-
zon problem have been discussed. In Sect. 5 we outlined how the AIXI model
solves various problem classes. These included sequence prediction, strategic
games, function minimization and, especially, learning to learn supervised.
The list could easily be extended to other problem classes like classification,
function inversion and many others. The major drawback of the AIXI model is
that it is uncomputable, or more precisely, only asymptotically computable,
which makes an implementation impossible. To overcome this problem, we
constructed a modified model AIXI¢tl, which is still effectively more intelligent
than any other time ¢ and length [ bounded algorithm (Sect. 6). The com-
putation time of AIXItl is of the order ¢-2!. A way of overcoming the large
multiplicative constant 2! was presented in [25] at the expense of an (unfortu-
nately even larger) additive constant. Possible further research was discussed.
The main directions could be to prove general and special reward bounds, use
AIXI as a supermodel and explore its relation to other specialized models,
and finally improve performance with or without giving up universality.

All in all, the results show that Artificial Intelligence can be framed by an
elegant mathematical theory. Some progress has also been made toward an
elegant computational theory of intelligence.

Annotated Bibliography

Introductory textbooks. The book by Hopcroft and Ullman, and in the
new revision co-authored by Motwani [18], is a very readable elementary intro-
duction to automata theory, formal languages, and computation theory. The



286 Marcus Hutter

Artificial Intelligence book [53] by Russell and Norvig gives a comprehen-
sive overview over Al approaches in general. For an excellent introduction to
Algorithmic Information Theory, Kolmogorov complexity, and Solomonoff in-
duction one should consult the book of Li and Vitdnyi [42]. The Reinforcement
Learning book by Sutton and Barto [66] requires no background knowledge,
describes the key ideas, open problems, and great applications of this field.
A tougher and more rigorous book by Bertsekas and Tsitsiklis on sequential
decision theory provides all (convergence) proofs [3].

Algorithmic information theory. Kolmogorov [33] suggested to define the
information content of an object as the length of the shortest program com-
puting a representation of it. Solomonoff [61] invented the closely related uni-
versal prior probability distribution and used it for binary sequence prediction
[61, 62] and function inversion and minimization [63]. Together with Chaitin
[4, 5], this was the invention of what is now called Algorithmic Information
theory. For further literature and many applications see [42]. Other interest-
ing applications can be found in [6, 59, 69]. Related topics are the Weighted
Majority algorithm invented by Littlestone and Warmuth [44], universal fore-
casting by Vovk [68], Levin search [37], PAC-learning introduced by Valiant
[67] and Minimum Description Length [40, 52]. Resource-bounded complex-
ity is discussed in [11, 12, 14, 32, 51], resource-bounded universal probability
in [39, 42, 55]. Implementations are rare and mainly due to Schmidhuber
[9, 54, 58, 56, 57]. Excellent reviews with a philosophical touch are [41, 64].
For an older general review of inductive inference see Angluin [1].

Sequential decision theory. The other ingredient in our AI£ model is se-
quential decision theory. We do not need much more than the maximum ex-
pected utility principle and the expectimax algorithm [46, 53]. Von Neumann
and Morgenstern’s book [47] might be seen as the initiation of game theory,
which already contains the expectimax algorithm as a special case. The liter-
ature on reinforcement learning and sequential decision theory is vast and we
refer to the references given in the textbooks [66, 3].

The author’s contributions. Details on most of the issues addressed in
this article can be found in various reports or publications or the book [30]
by the author: The AI{ model was first introduced and discussed in March
2000 in [19] in a 62-page-long report. More succinct descriptions were pub-
lished in [23, 24]. The AI£ model has been argued to formally solve a number
of problem classes, including sequence prediction, strategic games, function
minimization, reinforcement and supervised learning [19]. A variant of AI¢
has recently been shown to be self-optimizing and Pareto optimal [26]. The
construction of a general fastest algorithm for all well-defined problems [25]
arose from the construction of the time-bounded AIXI#l model [23]. Conver-
gence [28] and tight [29] error [22, 20] and loss [21, 27] bounds for Solomonoff’s
universal sequence prediction scheme have been proven. Loosely related ideas
on a market/economy-based reinforcement learner [36] and gradient-based
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reinforcement planner [35] were implemented. These and other papers are
available at http://www.hutterl.net.
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Summary. It is difficult to develop an adequate mathematical definition of intel-
ligence. Therefore we consider the general problem of searching for programs with
specified properties and we argue, using the Church-Turing thesis, that it covers the
informal meaning of intelligence. The program search algorithm can also be used
to optimise its own structure and learn in this way. Thus, developing a practical
program search algorithm is a way to create Al

To construct a working program search algorithm we show a model of programs
and logic in which specifications and proofs of program properties can be understood
in a natural way. We combine it with an extensive parser and show how efficient
machine code can be generated for programs in this model. In this way we construct
a system which communicates in precise natural language and where programming
and reasoning can be effectively automated.

1 Intelligence and the Search for Programs

Intelligence is usually observed when knowledge is used in a smart and creative
way to solve a problem. Still, it seems that the core of intelligence is neither
the knowledge nor the specific method to use it, but the general way to learn
from previous experience. This is not limited to adopting new knowledge,
but also includes learning new ways to use what we know, extending it by
reasoning, and even improving learning methods to learn more efficiently.
Developing new ways to solve problems is a better indication of intelligence
than solving separate tasks, as it is a creative work, where we do not have a
precise description of what to do and are expected to find the right method
knowing only what goals we want to achieve.

We will represent the informal notion of learning new ways to solve prob-
lems as the search for programs that fulfil some properties and we will design a
system to make it practical. To explain why we choose this representation we
have to analyse how methods of solving problems in general can be modelled
by abstract notions and how problems can be specified. We use the general
representation that dates back to the birth of AI and computer science with
the works of Godel, Turing, and Church.

We claim that the informal notion of a method for solving certain tasks
can be expressed in mathematical terms as a Turing machine. To justify this
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we use the Church-Turing thesis, the assumption that everything that is com-
putable, any complex behaviour of a system, can be computed or modelled
using only a small set of simple abstract operations. We can take different
sets of such operations, use either Turing machines or lambda calculus, re-
cursive functions or any other programming language. Still, these all have the
same computational power and over fifty years after stating this thesis we
did not manage to find any physical system, neither classical nor quantum,
that would be able to compute more than a simple Turing machine. Note a
straightforward consequence of the Church-Turing thesis: as far as we assume
that humans are normal, although very complex physical objects, the proce-
dure that operates in our brains can also be implemented on Turing machines
and therefore also on usual computers with enough memory, when these get
fast enough.

The thesis of Church and Turing justifies that any informally understood
method for solving a problem can be defined as an algorithm, a Turing machine
that takes the instance of the problem as input and returns the solution.

Of course, to be considered a viable solution for the given problem the
method (now — the Turing machine) has to fulfill certain requirements that
depend on the problem. For example, if we want to find a way to sort cards,
there might be many better or worse ways to do this, machines that take
the cards and return them mixed, but any solution must return the cards in
the right order. We will use the natural (first order) logic with the language
appropriate for describing Turing machines to specify such requirements.

Please note that in this logic we are not only able to specify what a good
solution is; we can also define an ordering, defining when one solution is better
than another. We can say, for example, that solution A is better than solution
B if it takes less time to sort through the cards, and this can be expressed
using the definition of the number of steps in a run of a Turing machine. We
also have to take into account that often the goals to achieve or the conditions
of work will not be directly specified, but can refer to knowledge about similar
events in the past. This can also be included in our requirement specification
if we encode the past knowledge inside the formula. Since we assume the
Church-Turing thesis, we can also take it for granted that a Turing machine
can verify the correctness of a solution, and then all possible problems that an
intelligent agent will ever be required to solve can be specified in first order
logic, or even a limited variant of it.

We have modeled problem solving as searching for Turing machines with
specified properties. Determining if such a machine exists is of course un-
decidable and the problem is intractable in general, but we can make some
additional assumptions. First, we can assume that we do not only want the
machine, but also a proof that it satisfies the formula and that such a machine
with a proof exists. This is a realistic assumption in the context of artificial
intelligence, since the agent normally wants to solve a problem that is solv-
able, and when the solution is found then it should be clear that it is correct.
When no solution can be found or the agent knows nothing about whether
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it is correct or not, not even in the probabilistic sense, then it has to resort
anyway to other methods that we do not investigate here, like asking another
agents for help, or trying to solve the problem again later. Therefore, we will
not consider the cases when the problem is not solvable or it can not be proved
that the solution is correct, since in such cases the Al agent has to determine
when to stop searching for the solution using external knowledge and taking
other factors into account. Instead, we will concentrate on making a model
of programs and a program search algorithm that preserves generality, yet
is simple and efficient enough to be used in practice for specific classes of
problems.

As we mentioned discussing intelligence, we do not only want a procedure
to solve certain tasks, but we want the agent to learn. Learning, in this case,
amounts to improving the procedure, so that after a number of problem in-
stances have been solved it will solve other similar instances more efficiently.
We will present a self-improving algorithm that searches for Turing machines
with specified properties. Moreover, we will show an innovative system that
binds programming and problem solving with natural language processing.

Outline. In the next section we will look for a general procedure that,
when given a logic formula, looks for a Turing machine fulfilling it, and that
optimizes itself with each successful run. We will present such a theoretical
method based on the program and proof enumeration technique, which was
already used by Godel [4] and Turing. The resulting procedure has the nice
property of self-improvement, similarly to how we improve our learning skills,
and it is very general, so after some time it will become as good as any other
such procedure with respect to any appropriate measure of efficiency. We will
also show how it can be used by an Al agent in an unknown environment to
learn to take successful actions.

The problem we face with such a theoretical solution is that it would not
be usable in practice if implemented in a direct way. The time required for it
to improve to a level of efficiency that would give any tangible results would
be enormous. Therefore, in subsequent sections we will present a model of
computation and program logic that combines functional programming with
reasoning using games. This model is powerful enough to express algorithms
and proofs on the same level of abstraction as we think of them, and at the
same time compile programs to binary code. Thus, when running the program
search procedure in this model, we can expect the implementation to execute
efficiently and, even when it does not find the results automatically, we can
still understand the steps it takes and guide it to the correct solution.

In Sect. 3 we will present the model and additionally give a method to
parse compound expressions that fits in the model. Such parsing improves the
presentation of programs and proofs, and can be extended to handle basic nat-
ural language processing. We will also use examples to show the compilation
of programs from this model to efficient code, going through the C language.

In Sect. 4 we will analyse how properties of programs described in the
model can be proved formally at a high level of abstraction. We will show
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how automatic proofs can be guided by the user or by different heuristics,
and how sub-procedures for reasoning in less general cases can be included in
the model without loss of generality.

Please note that the theoretical results we present are well known and we
do not discuss them very precisely. The model of computation, the method to
parse expressions, and the logic presented later are also based on well known
ideas but their combination is innovative. Therefore, we give more details
about it and describe how to create a system that allows to write in natural
language programs about which we can reason semi-automatically in formal
logic, and which can be compiled to efficient machine code.

2 Theoretical Results

In this section we give an overview of the theoretical results that concern
searching for programs with specified properties, and using program search in
the standard AT model. We take Turing machines as our model of computation
but any other Turing-complete model could be used here. Also, we do not
give the results in full detail, as most of them are already standard knowledge
in computer science, and we just want to put them in the context of AGI
or extend them, and in such cases we give references to papers where these
extensions are thoroughly discussed.

We start our theory by setting a description of programs and choosing
a computable set of axioms from which we will deduce program properties.
Later, we will present a model of programs that we consider simple and more
practical, but let us now consider the Turing machines defined in set theory
together with the axioms of set theory as formalized by Zermelo and Frankel,
which is a widely used axiomatization.

The program search problem can be stated as follows: given a formula

o(x1,...,2y,) in first order logic on the structure defined above with free
variables z1, ...,z denoting Turing machines, find a proof of ¢(m1, ..., my)
for some Turing machines mq, ..., mg.

Let us now state an important positive fact which is a straightforward
consequence of the enumerability of Turing machines and proofs.

Fact 1. There exists an algorithm that computes the solution to the pro-
gram search problem if any solution exists, so given (x1,...,xy) it computes
mi,...,mg and the proof of p(my, ..., my), assuming that for some machines
such a proof exists.

Proof. Since Turing machines, programs, and proofs are enumerable and it
can be determined algorithmically whether a sequence of formulas forms a
proof of a given claim, we can use the following algorithm to prove this fact:

(1) Set length to 1.
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(2) Enumerate all k-tuples my, . .., my of Turing machines shorter that length
and all proofs shorter than length and check if there is any proof among
these that proves ¢(myq,...,mg).

(3) If the correct machines and proof were found, return them, else increase
length by one and return to point (2).

Of course, this algorithm will find a solution, even the shortest one, if it exists.
Otherwise, the algorithm will never stop. We will denote this algorithm by
PSPy.

2.1 Program Search in the Standard AI Model

We will now consider the often used AI model where the agent interacts
with the environment. The agent is modeled to have sensors from which it
collects input, and effectors which it uses to execute actions. Additionally,
at any moment the agent may get additional feedback that denotes its own
happiness, or a quantified assessment it gets from a teacher agent. The agent’s
task is to maximize the total assessment it gets throughout its life.

To be able to construct well-acting agents we have to assume something
about the environment, or, at least, something about its probabilistic be-
haviour. One sensible assumption is that the environment, or at least the
probability distribution of events, is driven by some program (Turing ma-
chine). We want to create an agent that will behave in a worse way than the
optimal agent, if one exists, only for some period of time, and that will later
act optimally.

Let us sketch the possible construction of such an agent, which uses the
program search to find rules in environment behaviour, and uses these rules
as predictors, in order to find the best possible actions in the assumed envi-
ronment. This is a very natural general way to act by first planning actions
according to the expected future outcome, and then choosing the best ones.
Let our agent store the following internal variables:

(i) a list of interwoven events and actions called history, initially empty;
(ii) a program model that models the environment, initially any short one;
(iii) a program actor that models the suspected optimal behaviour of the
agent, initially any trivial program;
(iv) two numbers max size and max time, initially set to 1.

We consider a model of the environment m, to be better than mo if we
can prove that there is an agent that achieves, using mi, a better assessment
than any agent can achieve using ms. The agent will act according to the
following algorithm when a new event is encountered.

(1) Append the event to history.

(2) Search for any program smaller than max size that generates history
in less time than max time. Among such environment models, consider
only the best ones as defined above, and update model to be one of the
shortest of the best programs.
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(3) Search for a proof, shorter than max size, that shows that some program,
smaller than max size and halting on every input, can achieve a better
assessment in environment model than the program actor. In that case
update actor to be one of the shortest of such programs.

(4) Increase max time and max size by one.

(5) Calculate the response of actor to the input event, append the response
to history, and output it.

Since in the construction we search through all possible programs, we can
state the following simple fact.

Fact 2. If a Turing machine can describe the behaviour of the environment
and there is a provably optimal agent for this environment, then the presented
agent gets assessment smaller than the optimal one only for some period of
time, and behaves optimally afterwards.

Proof. Indeed, if the environment is a program, then after some running time
it will generate output that distinguishes it from any shorter program. Please
note that before the model is clear, the agent will assume an optimistic one
and undertake actions according to this assumption. Then, after analysing this
output in step (2), the variable model will be set to the correct environment
program. When this variable is set correctly the agent will search in step (3)
for the optimal agent for the detected environment. Since we assumed that
there is a provably optimal agent, this agent and the proof of its optimality
have some length. When max size exceeds this length, the variable actor
will be set to the optimal program. Therefore, the agent will start to behave
optimally after detecting the correct environment and the necessary proof.

The construction of the AIXI agent, based on similar ideas, but extended
and also specified in probabilistic context, was presented in detail and with full
proofs of optimality by Hutter [7, 8], and the underlying theory is described
thoroughly in [9]. The method to define different things as shortest possible
programs was developed by Levin [13] in the framework of Kolmogorov Com-
plexity theory [12, 21], and Li and Vitanyi give an excellent overview of these
and similar methods in [14].

2.2 Self-improving Program Search

We saw that the program search problem can be useful for the construction of
an Al agent, but we still do not know how to search for programs efficiently.
We do not intend to search for any program in particular, but to learn efficient
procedures to search for programs of interest. We will show how we can define
what programs are interesting depending on the history of previous search
tasks, and we will show how in such a case a procedure for program search
can improve itself.

Let us therefore specify an algorithm that receives solvable instances of the
program search problem, solves them, and improves its performance on such
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and similar instances. To construct this procedure we need to define how to
decide whether one program search algorithm is more efficient than another
with respect to the history of observed instances of the problem, but we will
postpone the discussion of such definitions until the next section. Also, the
presented algorithm runs several processes simultaneously, but it is clear that
such parallelism can be simulated on Turing machines as well as on single
processor computers.

First, the algorithm initializes variable P to PSPy, the program search al-
gorithm presented before, and P will be used both to solve received problem
instances and for self-improvement. It also initializes history to an empty
sequence. It then divides available resources into two parts and runs two pro-
cesses simultaneously. Whenever a new instance of a program search problem
is received, it is appended to history. The algorithm works with respect to
the efficiency measure p that in every moment depends on the history known
at that moment.

When the main process receives the problem instance, it uses P to solve
it, and returns the solution.

The improvement process works as follows:

(1) Append the formula that describes the problem of creating a program
search algorithm more efficient than P with respect to x4 to history.

(2) Use P to find a more efficient program search algorithm as defined by the
above formula.

(3) Update P to a new, more efficient version.

(4) Repeat, starting from (1) with new P and perhaps an extended history.

It can be seen that this algorithm not only solves the program search
problem, but also uses its program search capacity to optimize itself. There-
fore, even if PSPy is not an efficient solution, the presented procedure will
automatically find a better one, thanks to the improvement component. We
assumed that the efficiency relation depends on the history. If we do not want
this algorithm to fall in cycles thinking that some program search algorithm
P is better than P» and later, when history changes, deciding the other way,
we have to assume that the definition of efficiency will be monotonic in some
way. If we are not able to make such assumptions, it could be useful to sepa-
rate the history of instances received from outside from the self-improvement
instances, and use two separate program search algorithms, one for solving the
problems and the second to improve program search. The following fact can
be stated with the assumption that the definition of efficiency is appropriate,
but extensions to more complex situations are also possible.

Fact 3. Let a program search algorithm Q (our goal, the efficient algorithm)
be given and assume that the efficiency relation is such that there is only
a bounded number of algorithms that are provably more efficient than PSPy
and less efficient than @, with respect to any possible histories. Then, for any
sequence of received instances, the presented algorithm will after some number
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of steps substitute Q for its internal variable P and therefore become at least
as efficient as Q.

This way, if we find some reasonable definition of efficiency, then we can
just start this algorithm and wait until it finds a good solution to the program
search problem, which can then be used as an artificial general intelligence.
The only practical issue is that if we start with PSPy then even with the
best computers we would have to wait very long. Similar learning algorithms
and program searches have been analysed with the tools of Kolmogorov Com-
plexity theory, see [14, 8] for more information on this topic. Schmidhuber
gives detailed discussion of a recently developed optimally self-improving ma-
chine, called the Gédel Machine, in [19]. Such methods can also be relevant
for physics as is discussed in [20].

2.3 Discussion of Efficiency Definitions

Let us now address the definition of the efficiency of algorithms which solve
the program search problem. We will try to compare such algorithms with
respect to a history of instances of the problem they solve.

The usual definitions of complexity, even in the asymptotic sense, can not
be used in this case, as many instances are not solvable at all.

Let us again look at the problem from an informal and intuitive perspec-
tive. After gaining experience on a class of instances in the past, we will
normally say that an algorithm is efficient if it solves the instances from this
class and other similar instances fast. The remaining problem is to define
which instances are similar. It seems reasonable to say that two instances are
similar if one can be transformed into the other using a few simple transfor-
mations, for example by changing some parameters or shifting them in some
way.

Assume that a set of simple transformations is given. Then we can define
the level of similarity between two instances as the number of transformations
that have to be applied to get from one instance to the other. For practical
reasons we could also assume that if this number is greater than some constant,
then the instances are not similar at all.

Using this, we can say that one program search algorithm is more efficient
than another with respect to a history if it is faster on all instances in the
history and on all similar instances. We could also use an alternative definition
and say that the weight of an algorithm A with respect to history H is

w(A7 H) = 2{1 similar to some jEH}time(Aa Z) : 2simi1arity(i,H)’
where similarity (¢, H) denotes the smallest level of similarity between ¢ and
any instance from H, and time(A, i) denotes the time it takes A to solve i.
We assume that the sum is taken only over solvable instances <.

These two definitions seem reasonable and the first one satisfies the re-
quirements presented in Fact 3, since it is monotonic with respect to history.
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But, in practice, the second definition might be more useful, since it seems
practical to decrease the efficiency of the algorithm in a few cases if it can lead
to large improvements in other cases. It could also be practical to use some
other weight for the definition of efficiency, for example including a heuristic
that might make the efficiency a little worse in most cases, but improve it
dramatically for some narrow class of cases.

Similar problems in the context of program search are considered in more
detail by Schmidhuber in [18, 19], where more examples are presented. Still, it
seems that the efficiency functions will have to be fine-tuned experimentally
when such procedures start to be used in practice.

3 Convenient Model of Computation

We showed how to construct a learning program search procedure, but if we
tried to implement it directly using PSPq, then it would not be practical.
Therefore, our goal now is to present a more usable solution. The model we
present with its theory is described in detail in the documents in [10], where
the reader can also find an implementation of the discussed algorithms. Since
this is still work in progress, and many details are actively being polished,
the web site should be consulted for corrections and the most recent version.
Many of these definitions and methods are already standard in functional
programming and term rewriting [2].

Let us repeat our motivation: We need a model of computation which will
allow us to easily write programs and, at the same time, reason about them.
To construct such a model, we will concentrate only on two basic operations
used in programming, namely the possibility to define and apply functions
and the possibility to create compound data types. Therefore, in our model
we will operate on objects that represent some data, e.g. 1,2, [T, F], and on
functions like +, -, and. We are allowed to compose functions with data and
write terms in this way, for example 1 +2, T and F or (1 +2) - (3 +4).

To define functions in this model, we write rules telling how one term
should change to another, e.g. T and F — F. In such rules we can use variables,
for example, we can write x + 0 — z. Note that not all terms have any
meaning, for example 1+ T does not mean anything. To avoid such terms we
will introduce types, such that, for example 1 will have type int and + will
have type int,int — int so we will not be allowed to apply it to the boolean
value T.

The model we present is known as term rewriting with polymorphic types.
We will first give the basic definitions in detail, in order to show that formal
reasoning about these objects is indeed feasible and to avoid confusion later,
when we give examples less formally. We will also show how to parse terms
from expressions in semi-natural language and how to generate efficient ma-
chine code for programs is this model. Thus, we will construct a computer



300 Lukasz Kaiser

system where natural language input can be used for programming and rea-
soning without loss of efficiency of the created programs.

To define the model, we need the following classes, where arity is always a
function that assigns a natural number to each element of the considered set:

(i) the infinite enumerable set of type variables, denote «, [3,~;
(ii) the finite set I" of type names with arity, denoted T', R, S
(iii) the infinite enumerable set V' of term variables with arity, denoted x, y, z;
(iv) the finite set © of constructor names with arity, denoted A, B, C;
(v) the finite set X of function names with arity, denoted f, g, h.

Types. We start with formal type definitions. These might be difficult to
understand at first, but the examples we give should be enough for an intuitive
understanding. The set of types is defined inductively as the smallest set G
such that:

(1) each type variable « € G;

(2) if T € I' with arity n and Rs,...,R, € G then T(R1,...,R,) € G;

(3) for any number n and types T1,...,T, € G and result type R € G the
functional type (T1,...,T, — R) € G.

We allow functional types for n = 0 to maintain consistent notation, but we
consider the types R and ) — R to be identical, and we will not distinguish
them.
Let us for example define the types of boolean values, pairs, and lists. We
will set:
I' = {booleans, lists, pairs},

where booleans has arity 0, lists arity 1 and pairs arity 2. Then, the example
type E of pairs consisting of a boolean value and a list of any other type can
be represented as:

E = pairs(booleans, lists(«)) € G.

The set TVar(T') of type variables occurring in a type T is also defined
inductively by TVar(a) = {a}, TVar(T(Ry,...,R,)) = TVar(Ry) U --- U
TVar(R,,), and TVar(T1,...,T, — R) = TVar(T1)U- - -UTVar(T,,)UTVar(R),
so TVar(E) = {a}.

The usual intuition behind types is to view them as labeled trees, therefore
we introduce the notion of positions in types. The set A of positions is the set
of sequences of positive natural numbers. By A € A we will denote the empty
sequence or the top (root) position in the type.

For a given type T and position p we either say that p does not exist in
T, or define the type at position p in T (denoted by T|,) in the following
inductive way:

(1) X exists in each type and T'|y = T
(2) p=(n,q) exists in S = T(Ry,...,Ry) if m > n and ¢ exists in R,, and
in such case S|, = Rylq;
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(3) p=(n,q) exists in S =T1,...,T,, — R if either m > n and ¢ exists in
T, and in such case S|, = Ty, |q, or m+ 1 =n and ¢ exists in R and then
Slp = Ry.

A position p is above some position ¢ if there exists a sequence r of numbers
such that ¢ = (p,r). In this case we also say that ¢ is below p. The height of
a position is its length, and the height of a type is the maximal height of a
position existing in this type. In the example type F, one can see that position
3 does not exist in E, but E|s1 = lists(o)|1 = @ and so E has height 2.

Substitutions and unifiers. Sometimes we want to change a part of a
type, and then we say that we substitute type S in type T at position p. As
a result we get the type R = T[S],, such that for all positions ¢ not below
p that exist in 7', it holds that R|, = T|, and R|, = S. Less formally, R is
just T with the subtree at position p replaced by S. Substituting type S in
type T for a wvariable o is defined as substituting S in 7T at all positions p
where T'|, = a. A type substitution, usually denoted with letters o, 7, p, is a
set of pairs, each consisting of a type variable and a type, and such pairs are
denoted by « «— T. For a substitution ¢ = {1 «— Ti;...;a, < Tp} we will
denote the set of variables substituted for by TVar(c) = {a1,...,a,} and we
will say that by applying o to a type T we obtain the type R = To, which
is the result of substituting, for each i, the type T; in T for the variable «;.
In some algorithms it is necessary to ensure that the variables substituted for
are disjoint with variables in the terms we substitute. As an example, let us
apply {« < booleans} to the type E defined before and get

pairs(booleans, lists(«)){« < booleans} = pairs(booleans, lists(booleans)).

Sometimes we need to rename type variables in a type T'; either all vari-
ables or only the variables from a given set V. Let us set:

o={a—a " acTVar(T)NV},
~
k

where k is first set to 1 and doubles each time we rename any type. Then
v .
we can define the renamed type T° = To and if we want to rename all

. _— . TVar(T i
type variables, we will just write T" for T ar( ). As the names of substituted
variables change with the number k£ with each renaming, we can be sure that
any two types R and S have disjoint variables after renaming, TVar(R) N

TVar(S) = 0.
We can apply a type substitution o to another type substitution p =
{aq < T1;...;a, < T, } and obtain the substitution:

po ={ay —Tio;...;an — Tho}.

We will say that a type substitution o is more general than p if there is another
substitution 7 for which o7 C p.
Let us now take a set of tuples of types
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{(Th,R1,...,51),..., (T, Rpn, ..., Sn)}.

Any substitution p such that T;p = R;p = ... = S;p for each i is called a
unifier of this set, and it is a well known and important fact that if there is
any unifier, then there exists the most general one, which we will denote by:

mgu{(Tl,Rl, N .,Si), ceey (Tn7Rn, . ,Sn)}

The most general unifier can be computed in polynomial time if we can repre-

sent types in the form of acyclic graphs, and in exponential time if we restrict

the representation to trees, where identical sub-trees can not be compressed.
For example, it is easy to see that there is no unifier for:

{(pairs(booleans, &), pairs(lists(3),v) },
but the pair of types (pairs(a, booleans), pairs(lists(3),v) can be unified, and:
mgu{ (pairs(«a, booleans), pairs(lists(5),v)} = {a « lists(83)